$$
\begin{gathered}
3 \mathcal{D} \text { applications of trigonometry } \\
\mathcal{H K C E E ~ P a p e r ~} 1 \text { past paper sorted by topic } \\
(1980-2009)
\end{gathered}
$$

	Vertical pole鉛垂柱	Solid figures立體	Shadow影子	Paper folding摺紙	Inclined plane斜面
1980	X				
1981	NA				
1982		X			
1983	X				
1984	X				
1985	X				
1986	X				
1987		X			
1988			X		
1989			X		
1990	X				
1991	NA				
1992				X	
1993	X				
1994	X				
1995			X		
1996					X
1997	NA				
1998			X		
1999				X	
2000	Laser projection on vertical wall 激光投射				
2001				X	
2002	X				
2003			X		
2004					X
2005		X			
2006				X	
2007		X			
2008	X				
2009		X			

Vertical pole on horizontal triangular plane
1980B9

In the figure, $P C$ represents a vertical object of height h metres. From a point A, south of C, the angle of elevation of P is α. From a point $B, 400$ metres east of A, the angle of elevation of P is $\beta . A C$ and $B C$ are x metres and y metres respectively.
(a) (i) Express x in terms of h and α.
(ii) Express y in terms of h and β.
(b) If $\alpha=60^{\circ}$ and $\beta=30^{\circ}$, find the value of h correct to 3 significant figures.

In the figure, A, B and C are three points on the same horizontal ground. $H C$ is a vertical tower 50 m high. A and B are respectively due east and due south of the tower. The angles of elevation of H observed from A and B are respectively 45° and 30°.
(a) Find the distance between A and B.
(b) $\quad P$ is a point on $A B$ such that $C P \perp A B$.
(i) Find the distance between C and P to the nearest metre.
(ii) Find the angle of elevation of H observed from P to the nearest degree.
(6 marks)

Figure 4

In Figure 4, A, B and C lie in a horizontal plane. $A C=20 \mathrm{~m}$ $H A$ is a vertical pole. The angles of elevation of H from B and C are 30° and 15° respectively.
(In this question, give your answers correct to 2 decimal places.)
(a) (i) Find, in m, the length of the pole $H A$.
(ii) Find, in m , the length of $A B$.
(b) If A, B and C lie on a circle with $A C$ as diameter,
(i) find, in m , the distance between B and C :
(ii) find, in m^{2}, the area of $\triangle A B C$.

1985B8

Figure 3
In Figure 3, A, B and C are three points in a horizontal plane. $A B=100 \mathrm{~m} . \angle C A B=30^{\circ}, \angle A B C=45^{\circ}$.
(a) Find $B C$ and $A C$, in metres; correct to 1 decimal place.
(b) D is a point vertically above C. From B, the angle of elevation of D is 25°.
(i) Find $C D$, in metres, correct to 1 decimal place.
(ii) X is a point on $A B$ such that $C X \perp A B$.
(1) Find $C X$, in metres, correct to 1 decimal place.
(2) Find the angle of elevation of D from X, correct to the nearest degree.
(7 marks)

10.

Figure 4

In Figure $4, Q, R$ and S are three points on the same horizontal plane. $Q R=500 \mathrm{~m}, \angle S Q R=50^{\circ}$ and $\angle Q R S=35^{\circ} . P$ is a point vertically above S. The angle of elevation of P from Q is 15°.
(a) Find the distance, in metres, from P to the plane, correct to 3 significant figures.
(b) Find the angle of elevation of P from R, correct to the nearest degree.
10.

In Figure 4, $O T$ represents a vertical tower of height h metres. From the top T of the tower, two landmarks A and $B, 500$ metres apart on the same horizontal ground, are observed to have angles of depression 30° and 60° respectively. The bearings of A and B from the tower $O T$ are $\mathrm{S} 20^{\circ} \mathrm{W}$ and $\mathrm{S} 40^{\circ} \mathrm{E}$ respectively.
(a) Find the lengths of $O A$ and $O B$ in terms of h.
(3 marks)
(b) Express the length of $A B$ in terms of h. Hence, or otherwise, find the value of h.
(c) Find $\angle O A B$, correct to the nearest degree.

Hence write down
(i) the bearing of B from d.
(ii) the bearing of A from B.

12.

In Figure 8, $P Q$ is a vertical television tower h metres high. A and B are two points 100 m apart on a straight road in front of the tower with A, B and Q on the same horizontal ground and $\angle A Q B=80^{\circ}$. The angles of elevation of P from A and B are 45° and 60° respectively.
(a) (i) Express the lengths of $A Q$ and $B Q$ in terms of h.
(ii) Find h and $\angle Q A B$.
(b) A person walks from A along the road towards B. At a certain point R between A and B, the person finds that the angle of elevation of P is 50°. How far away is R from A ?
(4 marks)
14. In Figure 8, $O T$ is a vertical tower of height h metres and O, P and Q are points on the same horizontal plane. When a man is at P, he finds that the tower is due north and that the angle of elevation of the top T of the tower is 30°. When he walks a distance of 500 metres in the direction $\mathrm{N} 50^{\circ} \mathrm{E}$ to Q, he finds that the bearing of the tower is $\mathrm{N} 70^{\circ} \mathrm{W}$.
(a) Find $O Q$ and $O P$.
(b) Find h.
(c) Find the angle of elevation of T from Q, giving your answer correct to the nearest degree.
(d) (i) If he walks a further distance of 400 metres from Q in a direction $\mathrm{N} \theta^{\circ} \mathrm{E}$ to a point R (not shown in Figure 8) on the same horizontal plane, he finds that the angle of elevation of T is 20°. Find $\angle O Q R$ and hence write down the value of θ to the nearest integer.
(ii) If he starts from Q again and walks the same distance of 400 metres in another direction to a point S on the same horizontal plane, he finds that the angle of elevation of T is again 20°. Find the bearing of S from Q, giving your answer correct to the nearest degree.

Figure 8

14. In Figure $8, A B$ is a straight track 900 m long on the horizontal ground. E is a small object moving along $A B . S T$ is a vertical tower of height $h \mathrm{~m}$ standing on the horizontal ground. The angles of elevation of S from A and B are 20° and 15° respectively. $\angle T A B=30^{\circ}$.
(a) Express $A T$ and $B T$ in terms of h Hence find h.
(5 marks)
(b) (i) Find the shortest distance

Figure 8
(ii) Let θ be the angle of elevation of S from E. Find the range of values of θ as E moves along $A B$.

2008B15
15. In Figure 5, H is the top of a tower and A is vertically below $H . A B, B C$ and $C A$ are straight paths on the horizontal ground and D is a point on $A B$. Christine walks from A to D along $A D$ and finds that the angle of elevation of H from D is 50°. She then walks 50 m to B along $D B$ and finds that the angle of elevation of H from B is 35°.

Figure 5
(a) Find the distance between B and H.
(b) Christine walks 210 m from B to C along $B C$. It is given that the distance between C and H is 130 m .
(i) Find $\angle C B H$.
(ii) Find the angle between the plane BCH and the horizontal ground.
(iii) When Christine walks from B to C along $B C$, is it possible for her to find a point K on $B C$ such that the angle of elevation of H from K is 75° ? Explain your answer.

Solid figures

1982B8

The figure represents the framework of a cuboid made of iron wire. It has a square base of side $x \mathrm{~cm}$ and a height of $y \mathrm{~cm}$. The length of the diagonal $A B$ is 9 cm . The total length of wire used for the framework (including the diagonal $A B$) is 69 cm .
(a) Find all the values of x and y.
(b) Hence calculate $\angle A B C$ to the nearest degree for the case in which $y>x$.
(2 marks)

In this question, you should give your answers in cm or degrees, correct to 3 decimal places.

Figure 6 shows a solid in which $A B C D, D C F E$ and $A B F E$ are rectangles. $D G$ is the perpendicular from D to $A E . A B=3 \mathrm{~cm}$, $A D=3 \mathrm{~cm}$ and $D E=2 \mathrm{~cm} . \angle A D E=80^{\circ}$.
(a) Find $A E$.
(b) Find $\angle D A E$.
(c) Find $D G$.
(d) Find $B D$.
(e) Find the angle between the line $B D$ and the face $A B F E$.
(2 marks)

14.

In Figure 6, a thin triangular board $A B C$ is held with the vertex C on the horizontal ground. D and E are points on the ground vertically below A and B respectively. $B C$ is inclined at an angle of 30° with the horizontal. It is known that $A D=100 \mathrm{~cm}, B C=120 \mathrm{~cm}, \angle C A B=60^{\circ}$ and $\angle A B C=80^{\circ}$.
(a) Find $B E$ and $C E$.
(b) Find $A B$ and $A C$.
(c) Find $\angle C D E$ and the shortest distance from C to $D E$.

2007B16
16. Figure 6 shows a solid wooden souvenir $A B C D E F$ with the triangular base $A B C$ lying on the horizontal ground. A, B and C are vertically below E, F and D respectively. $D E F$ is an inclined triangular plane. It is given that $A B=9 \mathrm{~cm}, B C=5 \mathrm{~cm}, A C=6 \mathrm{~cm}, A E=B F=20 \mathrm{~cm}$ and $C D=23 \mathrm{~cm}$.

Figure 6
(a) Find the area of the triangular base $A B C$ and the volume of the souvenir $A B C D E F$. (4 marks)
(b) Find $\angle D F E$ and the shortest distance from D to $E F$.
(c) Can a piece of thin rectangular metal plate of dimensions $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ be fixed onto the triangular surface $D E F$ so that the thin metal plate completely lies in the triangle $D E F$? Explain your answer.
(2 marks)

2009B17
The figure shows a geometric model fixed on the horizontal ground. The model consists of two thin triangular metal plates $A B E$ and $C D E$, where D lies on $A B$ and $C E$ is perpendicular to the thin metal plate $A B E$. It is given that A, B, C and D lie on the horizontal ground. It is found that $A C=28 \mathrm{~cm}, B C=25 \mathrm{~cm}, B D=6 \mathrm{~cm}, B E=24 \mathrm{~cm}$ and $\angle A B C=57^{\circ}$.

(a) Find
(i) the length of $C D$,
(ii) $\angle B A C$,
(iii) the area of $\triangle A B C$,
(iv) the shortest distance from E to the horizontal ground.
(9 marks)
(b) A student claims that the angle between $D E$ and the horizontal ground is $\angle C D E$. Do you agree? Explain your answer.
(2 marks)

Plane object under sunshine and its shadow
13.

Ray of sunlight

In Figure 6, $A B C D$ is a wall in the shape of a trapezium with $A B$ and $D C$ vertical. Rays of sunlight coming from the back of the wall cast a shadow $H B C K$ on the horizontal ground such that the edges $H B$ and $K C$ of the shadow are perpendicular to $B C$. Suppose the angle of elevation of the sun is $\theta, A B=3 \mathrm{~m}, C D=2 \mathrm{~m}$ and $B C=6 \mathrm{~m}$.
(a) Express $H B$ and $K C$ in terms of θ.
(b) (i) Find the area S_{1} of the wall.
(ii) Find, in terms of θ, the area S_{2} of the shadow.

Hence show that $\frac{S_{1}}{S_{2}}=\tan \theta$.
(3 marks)
(c) If $\theta=30^{\circ}$, find the length of the edge $H K$, leaving your answer in surd form.

Figure 3
10. Answers in this question should be given correct to at least 3 significant figures or in surd form.

In Figure 3, a triangular board $A B C$, right-angled at A with $A B=A C=10 \mathrm{~m}$, is placed with the vertex A on the horizontal ground. $A B$ and $A C$ make angles of 45° and 30° with the horizontal respectively. The sun casts a shadow $A B^{\prime} C^{\prime}$ of the board on the ground such that B^{\prime} and C^{\prime} are vertically below B and C respectively.
(a) Find the lengths of $A B^{\prime}$ and $A C^{\prime}$.
(b) Find the lengths of $B C, B B^{\prime}$ and $C C^{\prime}$.
(c) Using the results of (b), or otherwise, find the length of $B^{\prime} C^{\prime}$.
(d) Find $\angle B^{\prime} A C^{\prime}$.

Hence find the area of the shadow.
15. Figure 9 shows a triangular road sign $A B C$ attached to a vertical pole $O A B$ standing on the horizontal ground. The plane $A B C$ is vertical with $O A=2 \mathrm{~m}, A B=0.6 \mathrm{~m}, A C=0.7 \mathrm{~m}$ and $B C=0.8 \mathrm{~m} . D$ is a point on the horizontal ground vertically below C and is due north of the foot O of the pole.

The sun is due west. When its angle of elevation is 30°, the shadow of the road sign on the horizontal ground is $A^{\prime} B^{\prime} C^{\prime}$.

(a) Find the lengths of $O A^{\prime}$ and $A^{\prime} B^{\prime}$.
(b) Calculate $\angle B A C$ and hence find the length of $O D$. (4 marks)
(c) Find the area of the shadow $A^{\prime} B^{\prime} C^{\prime}$.
(d) If the angle of elevation of the sun is less than 30°,
(i) state whether the shadow of $A B$ is longer than, shorter than, or equal to $A^{\prime} B^{\prime}$ in (a); and hence
(ii) state with reasons whether the area of the shadow of the road sign $A B C$ is larger than, smaller than, or equal to that of $A^{\prime} B^{\prime} C^{\prime}$ in (c).

17. In Figure 10 , triangular sign post $A B C$ stands vertically on the horizontal ground along the east-west direction. $A C=4 \mathrm{~m}, B C=6 \mathrm{~m}, \angle A C B=72^{\circ}$ and F is the foot of the perpendicular from A to $B C$. When the sun shines from $\mathrm{N} 50^{\circ} \mathrm{W}$ with an angle of elevation 35°, the shadow of the sign post on the horizontal ground is $D B C$.

(a) Find $A F$ and $F D$.
(b) Find the area of the shadow $D B C$.
(c) Suppose the sun shines from $\mathrm{N} x^{\circ} \mathrm{W}$, where $50<x<90$, but its angle of elevation is still 35°. State with reasons whether the area of the shadow of the sign post on the horizontal ground is greater than, smaller than or equal to the area obtained in (b).
(2 marks)

14.

Figure 5(a) shows a triangular metal plate $O A B$ standing on the horizontal ground. The side $O A$ lies along the north-south direction on the ground. $O B$ is inclined at an angle of 40° to the horizontal. The overhead sun casts a shadow of the plate, $O A C$, on the ground. $O A=3 \mathrm{~m}, O C=4 \mathrm{~m}$ and $A C=6 \mathrm{~m}$.
(a) Find $\angle O A C$.
(b) In Figure $5(b), O A D$ is the shadow of the plate cast on the horizontal ground when the sun shines from $\mathrm{S} \theta \mathrm{W}$ with an angle of elevation $30^{\circ} . A O$ is produced to cut $C D$ at $E . A D=8 \mathrm{~m}$.
(i) Find $C D$.
(ii) Find $\angle C A D$.
(iii) Using $C E+E D=C D$, or otherwise, find θ.

Paper Folding
1992B15

Figure 8a

Figure 8b
15.(Cont'd)

In Figure 8a, $A B C D$ is a thin square metal sheet of side three metres. The metal sheet is folded along $B D$ and the edges $A D$ and $C D$ of the folded metal sheet are placed on a horizontal plane Π with B two metres vertically above the plane II . E is the foot of the perpendicular from B to the plane II . (See Figure 8b)
(a) Find the lengths of $B D, E D$ and $A E$, leaving your answers in surd form.
(b) Find $\angle A D E$.
(c) Find the angle between $B D$ and the plane Π.
(d) Find the angle between the planes $A B D$ and $C B D$.

18. In Figure 10, a paper card $A B C$ in the shape of an equilateral triangle of side 24 cm is folded to form a paper aeroplane. D, E and F are points on edge $B C$ so that $B D=D E=E F=F C$. The aeroplane is formed by folding the paper card along the lines $A D, A E$ and $A F$ so that $A D$ and $A F$ coincide. It is supported by two vertical sticks $B M$ and $C N$ of equal length so that A, B, D, F, C lie on the same plane and A, E, M, N lie on the same horizontal ground.

(Top view)

Figure 10
(a) Find the distance between the tips, B and C, of the wings of the aeroplane. (6 marks)
(b) Find the inclination of the wings of the aeroplane to the horizontal ground.
(c) Find the length of the stick $C N$.

2001B16
16. Figure 11 shows a piece of pentagonal cardboard $A B C D E$. It is formed by cutting off two equilateral triangular parts, each of side $x \mathrm{~cm}$, from an equilateral triangular cardboard $A F G . A B$ is 6 cm long and the area of $B C D E$ is $5 \sqrt{3} \mathrm{~cm}^{2}$.

Figure 11

Figure 12
(a) Show that $x^{2}-12 x+20=0$.

Hence find x.
(b) The triangular part $A B E$ in Figure 11 is folded up along the line $B E$ until the vertex A comes to the position A^{\prime} (as shown in Figure 12) such that $\angle A^{\prime} E D=40^{\circ}$.
(i) Find the length of $A^{\prime} D$.
(ii) Find the angle between the planes $B C D E$ and $A^{\prime} B E$.
(iii) If A^{\prime}, B, C, D, E are the vertices of a pyramid with base $B C D E$, find the volume of the pyramid.

2006B17
In Figure $1, A B C$ is a triangular paper card. D is a point lying on $A C$ such that $B D$ is perpendicular to $A C$. It is known that $A B=40 \mathrm{~cm}, B C=60 \mathrm{~cm}$ and $A C=90 \mathrm{~cm}$.

Figure 1
(a) Find $A D$.
(b) The triangular paper card in the figure is folded along $B D$ such that $A B$ and $B C$ lie on a horizontal plane as shown in Figure 2.

Figure 2
(i) Suppose $\angle D A C=62^{\circ}$.
(1) Find the distance between A and C on the horizontal plane.
(2) Using Heron's formula, or otherwise, find the area of $\triangle A B C$ on the horizontal plane.
(3) Find the height of the tetrahedron $A B C D$ from the vertex D to the base $\triangle A B C$.
(ii) Describe how the volume of the tetrahedron $A B C D$ varies when $\angle A D C$ increases from 30° to 150°. Explain your answer.

Rectangular inclined plane
1996B15
15. In Figure 8, the rectangular plane $A B C D$ is a hillside with inclination 30°. C^{\prime} and O^{\prime} are vertically below C and O respectively so that A, B, C^{\prime}, O^{\prime} are on the same horizontal plane. $B O$ is a straight path on the hillside which makes an angle 60° with $B C$, and $O T$ is a vertical tower. $A B=2000 \mathrm{~m}, B O=1000 \mathrm{~m}$ and $O T=50 \mathrm{~m}$.

Figure 8
(a) Find $B C$ and $C C^{\prime}$.
(b) Find the inclination of $B O$ with the horizontal.
(c) Find $A T$.
(d) There are cable cars going directly from A to T. A man wants to go to T from B and he can do this by taking either one of the following two routes:

Route I: Walking uphill along $B O$ at an average speed of $0.3 \mathrm{~m} / \mathrm{s}$ and taking a lift in the tower for 1 minute from O to T.

Route II: Walking along $B A$ at an average speed of $0.8 \mathrm{~m} / \mathrm{s}$ and taking a cable car from A to T at an average speed of $3.2 \mathrm{~m} / \mathrm{s}$.

Determine which route takes a shorter time.

17.

Figure 9

In Figure 9, $A B C D$ is a rectangular inclined plane. E and F are points on the straight lines $A B$ and $C D$ respectively. F^{\prime} is vertically below $F . A, E, B$ and F^{\prime} are on the same horizontal ground. $\angle A F^{\prime} E=90^{\circ}, \angle F A F^{\prime}=60^{\circ}, \angle F E F^{\prime}=30^{\circ}, \angle E F B=20^{\circ}$ and $E F=20 \mathrm{~m}$.
(a) Find
(i) $\quad F F^{\prime}$ and $A E$,
(ii) $\angle A E F$.
(b) A small red toy car goes straight from E to B at an average speed of $2 \mathrm{~m} / \mathrm{s}$ while a small yellow toy car goes straight from F to B at an average speed of $3 \mathrm{~m} / \mathrm{s}$. The two toy cars start going at the same time. Will the yellow toy car reach B before the red one? Explain your answer.

Laser projection
2000B17
17. Figure 10 shows a circle with centre O and radius 10 m on a vertical wall which stands on the horizontal ground. A, B and C are three points on the circumference of the circle such that A is vertically below $O, \angle A O B=90^{\circ}$ and $\angle A O C=20^{\circ}$. A laser emitter D on the ground shoots a laser beam at B. The laser beam then sweeps through an angle of 30° to shoot at A. The angles of elevation of B and A from D are 60° and 30° respectively.

(a) Let A be $h \mathrm{~m}$ above the ground.
(i) Express $A D$ and $B D$ in terms of h.
(ii) Find h.
(b) Another laser emitter E on the ground shoots a laser beam at A with angle of elevation 25° The laser beam then sweeps through an angle of 5° to shoot at C. Find $\angle A C E$.

