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1. (a) (i)
n∑
k=0

akx
k = (2− x)n (1)

Substituting x = 1,

n∑
k=0

ak = 1

(ii) Differentiating (1) w.r.t. x,

n∑
k=1

kakx
k−1 = −n(2− x)n−1 (2)

Substituting x = 1,

n∑
k=1

kak = −n

(iii) Differentiating (2) w.r.t. x,

n∑
k=2

k(k − 1)akx
k−2 = n(n− 1)(2− x)n−2

Substituting x = 1,

n2 − n =

n∑
k=2

(k2 − k)ak

=

n∑
k=2

k2ak −
n∑
k=1

kak + a1

=

n∑
k=1

k2ak + n (By(a)(ii))

n2 − 2n =

n∑
k=1

k2ak

(b)
n∑
k=1

(n+ k)2ak = n2a0 +

n∑
k=1

(n2 + 2nk + k2)ak

= n2
n∑
k=0

ak + 2n

n∑
k=1

kak +

n∑
k=1

k2ak (By (a))

= n2 + 2n(−n) + (n2 − 2n)

= −2n
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2. (a) Let
2x− 23

(2x+ 1)(2x+ 5)(2x+ 7)
=

A

2x+ 1
+

B

2x+ 5
+

C

2x+ 7
.

Comparing the numerator on both sides,

2x− 23 = A(2x+ 5)(2x+ 7) +B(2x+ 1)(2x+ 7) + C(2x+ 1)(2x+ 5)

Substituting x = −1

2
, we have

2

(
−1

2

)
− 23 = A

[
2

(
−1

2

)
+ 5

] [
2

(
−1

2

)
+ 7

]
A = −1

Substituting x = −5

2
, we have

2

(
−5

2

)
− 23 = B

[
2

(
−5

2

)
+ 1

] [
2

(
−5

2

)
+ 7

]
B =

7

2

Substituting x = −7

2
, we have

2

(
−7

2

)
− 23 = C

[
2

(
−7

2

)
+ 1

] [
2

(
−7

2

)
+ 5

]
C = −5

2

∴
2x− 23

(2x+ 1)(2x+ 5)(2x+ 7)
= − 1

2x+ 1
+

7

2
· B

2x+ 5
− 5

2
· C

2x+ 7

(b)
n∑
k=1

2k − 3

(2k + 1)(2k + 5)(2k + 7)
= −

n∑
k=1

1

2k + 1
+

7

2

n∑
k=1

1

2k + 5
− 5

2

n∑
k=1

1

2k + 7
(By (a))

= −
n∑
k=1

1

2k + 1
+

7

2

n+2∑
k=3

1

2k + 1
− 5

2

n+3∑
k=4

1

2k + 1

= −1

3
− 1

5
− 1

7
+

7

2
· 1

7
+

(
7

2
− 5

2

)(
1

2n+ 3

)
+

(
7

2
− 5

2

)(
1

2n+ 5

)
− 5

2

(
1

2n+ 7

)
= − 37

210
+

1

2n+ 3
+

1

2n+ 5
− 5

2

(
1

2n+ 7

)
(c)

∞∑
k=4

2k − 23

(2k + 1)(2k + 5)(2k + 7)
= lim
n→∞

n∑
k=4

2k − 23

(2k + 1)(2k + 5)(2k + 7)

=
21

3 · 7 · 9
+

19

5 · 9 · 11
+

17

7 · 11 · 13
+ lim
n→∞

n∑
k=4

2k − 23

(2k + 1)(2k + 5)(2k + 7)

=
21

3 · 7 · 9
+

19

5 · 9 · 11
+

17

7 · 11 · 13

+ lim
n→∞

[
− 37

210
+

1

2n+ 3
+

1

2n+ 5
− 5

2

(
1

2n+ 7

)]
(By (b))

= − 25

2574
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3. (a) sinπx = 1

πx =
π

2
+ 2kπ ∀k ∈ Z

x =
1

2
+ 2k

(b) f(x) sinπx = 0 ∀x ∈ R and sinπx = 0 ∀x ∈ Z
⇒ f(x) = 0 ∀x ∈ R\Z
⇒ f(x) has infinitely many real roots
∵ f(x) is a polynomial with real coefficients
∴ f(x) = 0 ∀x ∈ R

(c) Let g(x) =

{
0 ∀x ∈ R\Z
1 ∀x ∈ Z

.

g(x) sinπx = 0 ∀x ∈ R
But g(x) 6= 0 ∀x ∈ Z
Hence, the claim is not true.

4. (a) P =

(
−
√

3 1

1
√

3

)(
1√
3

)
=

(
0
4

)
.

(b)

(
−
√

3 1

1
√

3

)
=

(
k 0
0 k

)(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)
=

(
k 0
0 k

)(
cos θ sin θ
sin θ − cos θ

)
=

(
k cos θ k sin θ
k sin θ −k cos θ

)
⇒

{
k cos θ = −

√
3

k sin θ = 1

⇒ tan θ = − 1√
3

⇒ θ = −π
6

or
5π

6

⇒

when θ = −π
6
, k = −2 (rejected,∵ k > 0)

when θ =
5π

6
, k = 2

T is a transformation that consists of a reflection about the x-axis, followed by a counter-

clockwise rotation of
5π

6
, followed by a scale of 2.
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5. (a) When n = 1, a1 =
3

2
=

1

21
+

1

30
.

When n = 2, a2 =
7

12
=

1

22
+

1

31
.

Assume, as the Inductive Hypothesis, that am =
1

2m
+

1

3m−1
and am+1 =

1

2m+1
+

1

3m
for

some positive integer m. Then, we have

am+2 =
1

6
(5am+1 − am)

=
1

6

[
5

(
1

2m+1
+

1

3m

)
−
(

1

2m
+

1

3m−1

)]
(By Inductive Hypothesis)

=
1

6

(
5− 2

2m+1
+

5− 3

3m

)
=

1

2
· 1

2m+1
+

1

3
· 1

3m

=
1

2m+2
+

1

3m+1

Thus, by the principle of mathematical induction, we have an =
1

2n
+

1

3n−1
for all positive

integer n.

(b)
m∑
k=1

ak =

m∑
k=1

1

2k
+

m∑
k=1

1

3k−1
(By (a))

=
1

2
·

1− 1

2m+1

1− 1

2

+
1− 1

3m

1− 1

3

= 1 +
2

3
− 1

2m+2
− 2

3m+1

<
5

3
< 3

Hence, there does not exist a positive integer m such that

m∑
k=1

ak > 3.
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6. (a) 2n− S = 2n−
n∑
k=1

(
1 +

1

k

)

=

n∑
k=1

[
2−

(
1 +

1

k

)]

=

n∑
k=2

(
1− 1

k

)
By A.M. ≥ G.M., we have

1

n− 1

n∑
k=2

(
1− 1

k

)
≥

[
n∏
k=2

(
1− 1

k

)] 1

n− 1

=

(
n∏
k=2

k − 1

k

) 1

n− 1

=

(
1 · 1

n

) 1

n− 1

∴
2n− S
n− 1

≥
(

1

n

) 1

n− 1

(b) 2n− S
n− 1

≥
(

1

n

) 1

n− 1
(By (a))

2n− S ≥ (n− 1)n

1

1− n

S ≤ 2n− (n− 1)n

1

1− n (3)

S =

n∑
k=1

(
1 +

1

k

)

≥ n

[
n∏
k=1

(
1 +

1

k

)] 1

n
(By A.M. ≥ G.M.)

= n

(
n∏
k=1

k + 1

k

) 1

n

= n(n+ 1)

1

n (4)

Combining (3) and (4), we have

2n− (n− 1)n

1

1− n ≥ S ≥ n(n+ 1)

1

n
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7. (a) (i) ∆ =

∣∣∣∣∣∣
1 2 −1
2 5 a− 1

a+ 2 1 2a+ 1

∣∣∣∣∣∣
= 5(2a+ 1) + 2(a− 1)(a+ 2)− 2 + 5(a+ 2)− 4(2a+ 1)− (a− 1)

= 2a2 + 8a+ 6

= 2(a+ 1)(a+ 3)
∴ (E) has a unique solution if and only if a 6= −1 and a 6= −3.

∆x =

∣∣∣∣∣∣
3 2 −1
4 5 a− 1
b 1 2a+ 1

∣∣∣∣∣∣
= 15(2a+ 1) + 2b(a− 1)− 4 + 5b− 8(2a+ 1)− 3(a− 1)

= (2b+ 11)a+ (3b+ 6)

∆y =

∣∣∣∣∣∣
1 3 −1
2 4 a− 1

a+ 2 b 2a+ 1

∣∣∣∣∣∣
= 4(2a+ 1) + 3(a− 1)(a+ 2)− 2b+ 4(a+ 2)− 6(2a+ 1)− b(a− 1)

= 3a2 + 3a− ba− b
= (a+ 1)(3a− b)

∆z =

∣∣∣∣∣∣
1 2 3
2 5 4

a+ 2 1 b

∣∣∣∣∣∣
= 5b+ 8(a+ 2) + 6− 15(a+ 2)− 4− 4b

= −7a+ b− 12
Hence, the solution to (E) when (E) has a unique solution is
x =

(2b+ 11)a+ (3b+ 6)

2(a+ 1)(a+ 3)

y =
3a− b

2(a+ 3)

z =
−7a+ b− 12

2(a+ 1)(a+ 3)

(ii) When a = −4, (E) becomes x + 2y − z = 3 . . . (1)
2x + 5y − 4z = 4 . . . (2)
−x + y − 5z = b . . . (3)

4× (1)− (2) : 2x+ 3y = 8
5× (1)− (3) : 6x+ 9y = 15− b
In order to have (E) to be consistent,

15− b = 3 · 8
b = −9

When b = −9, let x = t, we have

y =
8− 2t

3

z = t+ 2 · 8− 2t

3
− 3 =

7− t
3

Hence, the solution to (E) when a = −3 and b = −9 is(
t,

8− 2t

3
,

7− t
3

)
: t ∈ R
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(b) When a = −4

3
and b = −4, (E) becomes the first 3 equations.

By (a), the solution to the first 3 equations is

x =

[2(−4) + 11]

(
−4

3

)
+ [3(−4) + 6]

2

(
−4

3
+ 1

)(
−4

3
+ 3

) = 9

y =

3

(
−4

3

)
− (−4)

2

(
−4

3
+ 3

) = 0

z =

−7

(
−4

3

)
+ (−4)− 12

2

(
−4

3
+ 1

)(
−4

3
+ 3

) = 6

Substituting the solution into the forth equation, we have

L.S. = 4(9) + 5(0)− 6(6) = 0 6= 1 = R.S.

Hence, the system of equations is inconsistent.

(c) When a = −3 and b = −9, (E) becomes the system of constraints.
By (b), the solution to the system of constraints is(
t,

8− 2t

3
,

7− t
3

)
: t ∈ R

Substituting the solution into 3x2 − 7y2 + 8z2, we have

3t2 − 7

(
8− 2t

3

)2

+ 8

(
7− t

3

)2

=
27t2 − 448 + 224t− 28t2 + 392− 112t+ 8t2

9

=
7t2 + 112t− 56

9

=
7(t+ 8)2

9
− 56

Hence, the least value of 3x2 − 7y2 + 8z2 is −56.
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8. (a) (i) sin
π

2n

n−1∑
k=1

sin
kπ

n
=

n−1∑
k=1

sin
π

2n
sin

kπ

n

=
1

2

n−1∑
k=1

[
cos

(
k − 1

2

)
π

n
− cos

(
k +

1

2

)
π

n

]
=

1

2

[
cos

π

2n
− cos

(
n− 1

2

)
π

n

]
= sin

π

2
sin

(n− 1)π

2n

= sin
(n− 1)π

2n

(ii)
n−1∑
k=1

∣∣αk − 1
∣∣ =

n−1∑
k=1

∣∣∣∣cos
2kπ

n
+ i sin

2kπ

n
− 1

∣∣∣∣ (By de Moivre’s formula)

=

n−1∑
k=1

√(
cos

2kπ

n
− 1

)2

+ sin2 2kπ

n

=

n−1∑
k=1

√
2

(
1− cos

2kπ

n

)

= 2

n−1∑
k=1

sin
kπ

n

= 2

[
sin

(n− 1)π

2n

](
sin

π

2n

)−1
(By (a))

= 2
[
sin
(π

2
− π

2n

)](
sin

π

2n

)−1
= 2 cot

π

2n

(b) (i) Suppose 1, β, β2, . . . , βn−1 are not all distinct.
There exists 0 ≤ i < j ≤ n− 1 such that βi = βj .
We have βj−i = 1 and 0 < j − i < n− 1.
But βk 6= 1 for all k = 1, 2, . . . , n− 1.
Contradiction arises.
Hence, 1, β, β2, . . . , βn−1 are all distinct.

(ii) Since βn = 1, β is the n-th unity root of 1.

β = cos
2π

n
+ i sin

2π

n

2n−1∑
k=1

∣∣βk − 1
∣∣ =

n−1∑
k=1

∣∣βk − 1
∣∣+ |βn − 1|+

2n−1∑
k=n+1

∣∣βk − 1
∣∣

=

n−1∑
k=1

∣∣βk − 1
∣∣+ |1− 1|+

n−1∑
k=1

∣∣βn+k − 1
∣∣

=

n−1∑
k=1

∣∣βk − 1
∣∣+ 0 +

n−1∑
k=1

∣∣1 · βk − 1
∣∣

= 2

n−1∑
k=1

∣∣βk − 1
∣∣

= 4 cot
π

2n
(By (a)(ii))
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9. (a) Let f(x) = (1 + x)λ − (1 + λx).
f ′(x) = λ(1 + x)λ−1 − λ
f ′′(x) = λ(λ− 1)(1 + x)λ−2

f ′(x) = 0⇔ λ(1 + x)λ−1 − λ = 0

⇔ (1 + x)λ−1 = 1

⇔ x = 0

f ′′(0) = λ(λ− 1)

> 0 for λ > 1
Hence, f(x) is minimum at x = 0, i.e. for any x > 0

f(x) > f(0)

(1 + x)λ − (1 + λx) > (1 + 0)λ − (1 + λ0)

(1 + x)λ > 1 + λx

(b) (i)

(
1 +

1

n+ 1

)n+1
n

> 1 +
n+ 1

n
· 1

n+ 1
(By (a))(

1 +
1

n+ 1

)n+1

>

(
1 +

1

n

)n
an+1 > an

(ii) (1)
bn
bn+1

=

(
1 +

1

n

)n+1

(
1 +

1

n+ 1

)n+2

=

 n+ 1

n
n+ 2

n+ 1


n+1(

n+ 1

n+ 2

)

=

(
(n+ 1)2

n(n+ 2)

)n+1(
n+ 1

n+ 2

)
=

(
n(n+ 2) + 1

n(n+ 2)

)n+1(
n+ 1

n+ 2

)
=

(
1 +

1

n(n+ 2)

)n+1(
n+ 1

n+ 2

)

(2)
bn
bn+1

=

(
1 +

1

n(n+ 2)

)n+1(
n+ 1

n+ 2

)
(By (b)(ii)(1))

>

(
1 +

1

n(n+ 2) + 1

)n+1(
n+ 1

n+ 2

)
=

(
1 +

1

(n+ 2)2

)n+1(
n+ 1

n+ 2

)
=

[
Cn+1

0 +
Cn+1

1

(n+ 1)2
+ · · ·

](
n+ 1

n+ 2

)
>

[
1 +

n+ 1

(n+ 1)2

](
n+ 1

n+ 2

)
=

(
n+ 2

n+ 1

)(
n+ 1

n+ 2

)
= 1
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(iii) bn =

(
1 +

1

n

)n+1

>

(
1 +

1

n

)n
(∵ 1 +

1

n
> 1)

= an

By (b)(i) and (b)(ii)(2), we have an > an−1 > · · · > a1 and bn < bn−1 < · · · < b1.
Hence, a1 < a2 < · · · < an < bn < bn−1 < · · · < b1.
Since an is strictly increasing and bounded above by b1, lim

n→∞
an exists.

Similarly, since bn is strictly decreasing and bounded below by a1, lim
n→∞

bn exists.

bn = an

(
1 +

1

n

)
lim
n→∞

bn = lim
n→∞

an

(
1 +

1

n

)
=
(

lim
n→∞

an

)(
lim
n→∞

1 +
1

n

)
=
(

lim
n→∞

an

)
(1 + 0)

= lim
n→∞

an

(iv)

n∏
k=1

ak =

(
2

1

)(
3

2

)2

· · ·
(
n+ 1

n

)n
=

(n+ 1)n

n!
n∏
k=1

bk =

(
2

1

)2(
3

2

)3

· · ·
(
n+ 1

n

)n+1

=
(n+ 1)n+1

n!

lim
n→∞

an > ak

n∏
k=1

lim
n→∞

an >

n∏
k=1

ak

en >
(n+ 1)n

n!
n! en > (n+ 1)n

lim
n→∞

bn < bk

n∏
k=1

lim
n→∞

bn <

n∏
k=1

bk

en <
(n+ 1)n+1

n!

n! en < (n+ 1)n+1

Hence, (n+ 1)n+1 > n! en > (n+ 1)n.
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10. (a) Let the degree of g(x) be m.

From the equation [f(x)]
2 − 1 = (x2 − 1) [g(x)]

2
, we have

2n = 2 + 2m

m = n− 1

Hence, the degree of g(x) is n− 1.

(b) Suppose f(x) and g(x) have non-constant common factor x−α, then f(α) = 0 and g(α) = 0.
But we have
[f(α)]

2 − 1 = (α2 − 1) [g(α)]
2

02 − 1 = (α2 − 1)(02)

−1 = 0
which is impossible. Hence, f(x) and g(x) have no constant common factors.

(c) [f(x)]
2 − 1 = (x2 − 1) [g(x)]

2

Differentiating both sides w.r.t. x, we have
2f(x)f ′(x) = 2x [g(x)]

2
+ 2(x2 − 1)g(x)g′(x)

f(x)f ′(x) = g(x)
[
x g(x) + (x2 − 1)g′(x)

]
which shows that g(x) is a factor of f(x)f ′(x). But from (b), f(x) and g(x) have no non-
constant common factors.
Therefore, g(x) is a factor of f ′(x), i.e. f ′(x) is divisible by g(x).

(d) From (c), f ′(x) is divisible by g(x).
Let g(x) = kf ′(x) and f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0.

g(x) = k
[
annx

n−1 + an−1(n− 1)xn−1 + · · ·+ a1
][

anx
n + an−1x

n−1 + · · ·+ a1x+ a0
]2−1 = (x2−1)k2

[
annx

n−1 + an−1(n− 1)xn−1 + · · ·+ a1
]2

Comparing the coefficient of the highest degree term on both sides, we have
a2n = k2n2a2n

k2 =
1

n2

Hence, [f(x)]
2 − 1 =

1

n2
(x2 − 1) [f ′(x)]

2
, i.e. n2

{
[f(x)]

2 − 1
}

= (x2 − 1) [f ′(x)]
2
.

(e) n2
{

[f(x)]
2 − 1

}
= (x2 − 1) [f ′(x)]

2
(By (d))

n2
{[
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

]2 − 1
}

= (x2 − 1)
[
annx

n−1 + an−1(n− 1)xn−1 + · · ·+ a1
]2

Comparing the coefficient of the second highest degree term on both sides, we have
n2(2anan−1) = 2 (ann) [an−1(n− 1)]

2n2anan−1 = 2n2anan−1 − 2nanan−1

anan−1 = 0
Since the degree of f(x) is n, an 6= 0. Then we have an−1 = 0.
n∑
k=1

ak = −an−1
an

= − 0

an
= 0
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11. (a) (i) (1) Differentitating f(x) = µ1x+ µ2(1− xs) 1
s , we have

f ′(x) = µ1 + µ2

(
1

s

)
(1− xs)

1
s−1

(
−sxs−1

)
= µ1 − µ2

(
x−s − 1

) 1
s−1

f ′′(x) = −µ2

(
1

s
− 1

)(
x−s − 1

) 1
s−2 (−sx−s−1)

= −µ2(s− 1)
(
x−s − 1

) 1
s−2

[
x−(s+1)

]
< 0 ∀x ∈ (0, 1)

f ′(x) = 0⇔ µ1 − µ2

(
x−s − 1

) 1
s−1 = 0

⇔ (x−s − 1)−
1
r =

µ1

µ2

⇔ x =

[(
µ2

µ1

)r
+ 1

]− 1
s

Since 0 <

[(
µ2

µ1

)r
+ 1

]− 1
s

< 1, f ′′

([(
µ2

µ1

)r
+ 1

]− 1
s

)
< 0.

f(x) acheives its maximum at x =

[(
µ2

µ1

)r
+ 1

]− 1
s

.

Thus, ∀x ∈ (0, 1),

f(x) ≤ f

([(
µ2

µ1

)r
+ 1

]− 1
s

)

µ1x+ µ2(1− xs) 1
s ≤ µ1

[(
µ2

µ1

)r
+ 1

]− 1
s

+ µ2

{
1−

[(
µ2

µ1

)r
+ 1

]−1} 1
s

= µ1

(
µr1

µr1 + µr2

) 1
s

+ µ2

(
µr2

µr1 + µr2

) 1
s

=
µr1 + µr2

(µr1 + µr2)
1
s

(1 +
r

s
=
r + s

s
=
rs

s
= r)

= (µr1 + µr2)
1
r

(2) Let x =
λ1

(λs1 + λs2)
1
s

.

λs1 < λs1 + λs2

λ1 < (λs1 + λs2)
1
s

λ1

(λs1 + λs2)
1
s

< 1

λs1 + λs2 > 0

(λs1 + λs2)
1
s > 0

λ1

(λs1 + λs2)
1
s

> 0

From (a) (i) (1), we have

µ1 ·
λ1

(λs1 + λs2)
1
s

+ µ2

[
1− λs1

λs1 + λs2

] 1
s

≤ (µr1 + µr2)
1
r

µ1 ·
λ1

(λs1 + λs2)
1
s

+ µ2 ·
λ2

(λs1 + λs2)
1
s

≤ (µr1 + µr2)
1
r

µ1λ1 + µ2λ2 ≤ (µr1 + µr2)
1
r (λs1 + λs2)

1
s
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(ii) When n = 2, from (a) (i) (2), µ1λ1 + µ2λ2 ≤ (µr1 + µr2)
1
r (λs1 + λs2)

1
s .

Assume, as the Inductive Hypothesis, that

m∑
k=1

akbk ≤

(
m∑
k=1

ark

) 1
r
(

m∑
k=1

bsk

) 1
s

for some

positive integer m. Then, we have

m+1∑
k=1

akbk =

m∑
k=1

akbk + ak+1bk+1

≤

(
m∑
k=1

ark

) 1
r
(

m∑
k=1

bsk

) 1
s

+ ak+1bk+1 (By Inductive Hypothesis)

≤

(
m∑
k=1

ark + ark+1

) 1
r
(

m∑
k=1

bsk + bsk+1

) 1
s

(By (a) (i) (2))

=

(
m+1∑
k=1

ark

) 1
r
(
m+1∑
k=1

bsk

) 1
s

Thus, by the principle of mathematical induction, we have

n∑
k=1

akbk ≤

(
n∑
k=1

ark

) 1
r
(

n∑
k=1

bsk

) 1
s

for all positive integer n.

(b) Let ak = 1, bk = x1−βk and
1

s
= 1− β.

β > 0

1− β < 1

s =
1

1− β
> 1

1

r
= 1− 1

s
= 1− (1− β)

= β

< 1

r > 1
From (a) (ii) (2), we have
n∑
k=1

x1−βk ≤

(
n∑
k=1

1

)β ( n∑
k=1

xk

)1−β

= nβ

(
n∑
k=1

xk

)1−β

(c) Put xk = 2k − 1, β =
2

3
and n = 1331. From (b), we have

1331∑
k=1

(2k − 1)
1
3 ≤ 1331

2
3

(
1331∑
k=1

2k − 1

) 1
3

= 121

(
2

1331∑
k=1

k − 1331

) 1
3

= 121 [(1 + 1331) (1331)− 1331]
1
3

= 121× 121

= 14641
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HONG KONG ADVANCED LEVEL EXAMINATION 2012

PURE MATHEMATICS PAPER 2

SAMPLE SOLUTIONS



1. (a) Since g(x) is continuous at x = π, we have

g(π) = lim
x→π+

g(x)

f(π) + π + k = lim
x→π+

sinx

x− π

−1 + π + k = lim
x→π+

− sin(x− π)

x− π
−1 + π + k = −1

k = −π

(b) lim
n→π−

g(x)− g(π)

x− π
= lim
n→π−

f(x) + x− π − (−1)

x− π

= lim
n→π−

f ′(x) + 1

1
(By l’Hôpital’s rule)

= 4

lim
n→π+

g(x)− g(π)

x− π
= lim
n→π+

sinx

x− π
− (−1)

x− π

= lim
n→π+

sinx+ x− π
(x− π)2

= lim
n→π+

cosx+ 1

2(x− π)
(By l’Hôpital’s rule)

= lim
n→π+

− sinx

2
(By l’Hôpital’s rule)

= 0

Since lim
n→π−

g(x)− g(π)

x− π
6= lim
n→π+

g(x)− g(π)

x− π
, g(x) is not differentiable at x = π.
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2. (a) When n = 1,
d

dx
sinx = cosx = sin

(π
2

+ x
)

.

Assume, as the Inductive Hypothesis, that
dk

dxk
sinx = sin

(
kπ

2
+ x

)
. Then we have

dk+1

dxk+1
sinx =

d

dx

(
dk

dxk
sinx

)

=
d

dx
sin

(
kπ

2
+ x

)
(By Inductive Hypothesis)

= cos

(
kπ

2
+ x

)
= sin

(
π

2
+
kπ

2
+ x

)
= sin

[
(k + 1)π

2
+ x

]

Hence, by the principle of Mathematical Induction,
dn

dxn
sinx = sin

(nπ
2

+ x
)

for all positive

integer n.

(b) (i) f(x) =
sinx

1 + 4x2(
1 + 4x2

)
f(x) = sinx

Differentiating both side n+ 2 times w.r.t. x, we have(
n+ 2

0

)
(1 + 4x2)f (n+2)(x) +

(
n+ 2

1

)
(4x)f (n+1)(x) +

(
n+ 2

2

)
(4)f (n)(x) = sin

[
(n+ 2)π

2
+ x

]
(By (a))

(1 + 4x2)f (n+2)(x) + 4(n+ 2)xf (n+1)(x) + 4(n+ 2)(n+ 1)f (n)(x) = sin

[
(n+ 2)π

2
+ x

]
Substituting x = 0, we have

f (n+2)(x) + 4(n+ 2)(n+ 1)f (n)(x) = sin
(n+ 2)π

2

f (n+2)(x) = −4(n+ 2)(n+ 1)f (n)(x)− sin
nπ

2

(ii) f (5)(0) = −4(5)(4)f (3)(0)− sin
3π

2
(By (b) (i))

= −80
[
−4(3)(2)f (1)(0)− sin

π

2

]
− (−1) (By (b) (i))

= −80

{
−24

[
cosx

1 + 4x2
− (sinx)(8x)

(1 + 4x2)2

]
x=0

− 1

}
+ 1

= 2001
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3. (a) 3I + 4J = 3

∫
sinx

3 sinx+ 4 cosx
dx+ 4

∫
cos

3 sinx+ 4 cosx
dx

=

∫
3 sinx+ 4 cosx

3 sinx+ 4 cosx
dx

=

∫
dx

= x+ C1

(b) 4I − 3J = 4

∫
sinx

3 sinx+ 4 cosx
dx− 3

∫
cos

3 sinx+ 4 cosx
dx

=

∫
4 sinx− 3 cosx

3 sinx+ 4 cosx
dx

=

∫
d(−4 cosx− 3 sinx)

3 sinx+ 4 cosx

= − ln (3 sinx+ 4 cosx) + C2

(c) From (a) and (b), we have
3I + 4J = x+ C1 . . . (1)

4I − 3J = − ln (3 sinx+ 4 cosx) + C2 . . . (2)

3× (1) + 4× (2), we have
25I = 3x− 4 ln (3 sinx+ 4 cosx) + 3C1 + 4C2

I =
3x− 4 ln (3 sinx+ 4 cosx)

25
+ C

where C is a constant.
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4. (a) Let x =

√
3

2
tan θ − 1

2
. Then dx =

√
3

2
sec2 θ dθ.

sin θ =
x+

1

2√(
x+

1

2

)2

+
3

4

=
2x+ 1√

(2x+ 1)
2

+ 3
, cos θ =

√
3

2√(
x+

1

2

)2

+
3

4

=

√
3√

(2x+ 1)
2

+ 3

x2 + x+ 1 =

(
x+

1

2

)2

+
3

4

=
3

4

(
tan2 θ + 1

)
=

3

4
sec2 θ

∫
x+ 1

(x2 + x+ 1)
√
x2 + x+ 1

dx =

∫
(√

3

2
tan θ +

1

2

)(√
3

2
sec2 θ

)
3

4
sec2 θ

√
3

4
sec2 θ

dθ

=
2

3

∫ √
3 sin θ + cos θ dθ

=
2

3

(
−
√

3 cos θ + sin θ
)

+ C

=
4 (x− 1)

3
√

(2x+ 1)2 + 3
+ C

(b) lim
n→∞

3n∑
k=1

n(k + n)

(k2 + kn+ n2)
√
k2 + kn+ n2

= lim
n→∞

1

n

3n∑
k=1

k

n
+ 1[(

k

n

)2

+
k

n
+ 1

]√(
k

n

)2

+
k

n
+ 1

=

∫ 3

0

x+ 1

(x2 + x+ 1)
√
x2 + x+ 1

dx

=

[
4 (x− 1)

3
√

(2x+ 1)2 + 3

]3
0

(By (a))

=
8

3
√

52
+

2

3

=
4
√

13 + 26

39

5. (a)
d

dx

√
xe2
√
x =

1

2
√
x
e2
√
x +
√
x

(
2 · 1

2
√
x

)
e2
√
x

=
1

2
√
x
e2
√
x + e2

√
x

(b) The volume of the solid is given by

π

∫ 9

4

e2
√
x dx = π

(√
xe2
√
x
∣∣∣9
4
−
∫ 9

4

1

2
√
x
e2
√
x dx

)
= π

(
3e6 − 2e4 −

∫ 9

4

e2
√
x d2
√
x

)
= π

(
3e6 − 2e4 − e2

√
x
∣∣∣9
4

)
= π

(
2e6 − e4

)
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6. (a) Let P be (x′, y′). Then the equation of the tangent is

x′x

400
+
y′y

144
= 1

Since the tangent passes through A and B, we have

x′(h)

400
+
y′(40)

144
= 1 (1)

x′(−h)

400
+
y′(0)

144
= 1 (2)

(1)+(2), we have

40y′

144
= 2

y′ = 7.2 (3)

Substituting (3) into (E), we have

x′2

400
+

7.22

144
= 1

x′ = 16 (rejected) or − 16 (4)

Hence, the coordinates of P are (−16, 7.2).
Substituting (4) into (2), we have

(−16)(−h)

400
= 1

h = 25

(b) (i) Let the equation of L2 be

y − 7.2 = m(x+ 16)

mx− y + 7.2 + 16m = 0

Since AB is the angle bisector of L1 and L2, the equation of AB can be written as
mx− y + 7.2− 16m√

m2 + 1
= −16− x(

m+
√
m2 + 1

)
x− y + 7.2 + 16

(
m+

√
m2 + 1

)
= 0

By considering the points A and B, the equation of AB can also be written as

y =
4

5
(x+ 25)

4x− 5y + 100 = 0

Comparing the two equation, we have

m+
√
m2 + 1 =

4

5

m = − 9

40
Hence, the equation of L2 is

y − 7.2 = − 9

40
(x+ 16)

9x+ 40y − 432 = 0

(ii) Substituting y = 0 into the equation of L2, we have the coordinates of Q to be (48, 0).

The slope of AQ is
40

25− 48
= −40

23
.

The slope of PQ is
7.2

−16− 48
=

9

80
.

The slope of AP is
40

25 + 25
=

4

5
.

Since none of the products of the slopes of any 2 sides is -1, 4APQ is not a right-angled
triangle.
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7. (a) f ′(x) = (12x+ 5)e−x − (6x2 + 5x+ 6)e−x

= (−6x2 + 7x− 1)e−x

= −(6x− 1)(x− 1)e−x

f ′′(x) = (−12x+ 7)e−x − (−6x2 + 7x− 1)e−x

= (6x2 − 19x+ 8)e−x

= (3x− 8)(2x− 1)e−x

(b) Note that f(x) 6= 0 ∀x ∈ R, f ′(x) = 0 ⇔ x =
1

6
or 1, f ′′(x) = 0 ⇔ x =

1

2
or

8

3
.

x

(
−∞, 1

6

)
1

6

(
1

6
,

1

2

)
1

2

(
1

2
, 1

)
1

(
1,

8

3

)
8

3

(
8

3
,+∞

)
f ′(x) − 0 + + + 0 − − −

f ′′(x) + + + 0 − − − 0 +

(i) f(x) > 0 ⇔ x ∈ R

(ii) f ′(x) > 0 ⇔ 1

6
< x < 1

(iii) f ′′(x) > 0 ⇔ x <
1

2
or x >

8

3

(c) From the table in (b), the minimum point is

(
1

6
, 7e
−1
6

)
, the maximum point is

(
1, 17e−1

)
,

the points of inflexion are

(
1

2
, 10e

−1
2

)
and

(
8

3
, 62e

−8
3

)
.

(d) ∵ lim
n→+∞

f(x) = lim
n→+∞

(
6x2 + 5x+ 6

)
e−x = 0

∴ the horizontal asymptote is y = 0.

(e)

x

y

(
1

6
, 7e
−1
6

)
(

1

2
, 17e−1

)

(
1, 10e

−1
2

)

(
8

3
, 62e

−8
3

)
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(f) With the help of the graph of f(x), we have

n(k) =



0 when k ≤ 0

1 when 0 < k < 7e
−1
6 or k > 10e

−1
2

2 when k = 7e
−1
6 or k = 10e

−1
2

3 when 7e
−1
6 < k < 10e

−1
2
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8. (a) f(r + 0) = f(r)f(0)− f(r)− f(0) + 2

2 = 2f(0)− 2− f(0) + 2

f(0) = 2

(b) Suppose f(x) is not injective.
There exists x 6= y such that f(x) = f(y). Then

f(x− y) = f(x)f(y)− f(x)− f(y) + 2

= f(x)f(x)− f(x)− f(x) + 2

= f(x− x)

= f(0)

= 2

But from property (2), we know that there exists a unique real number r such that f(r) = 2.
From (a), we know that r = 0.
Since x 6= y, x− y 6= 0.
Contradiction arises.
f(x) is injective.

(c) For any x 6= 0,

f(x) = f
(x

2

)
f
(x

2

)
− f

(x
2

)
− f

(x
2

)
+ 2

=
[
f
(x

2

)]2
− 2f

(x
2

)
+ 2

=
[
f
(x

2

)
− 1
]2

> 0

Hence, there does not exist x′ such that f(x′) = k for any k < 0.
f(x) is not surjective.

(d) (i) f ′(x) = lim
h→0

f(x+ h)− f(x)

x+ h− x

= lim
h→0

f(x)f(h)− f(x)− f(h) + 2− f(x)

h

= lim
h→0

[f(x)− 1] [f(h)− 2]

h

=

[
lim
h→0

f(x)− 1

] [
lim
h→0

f(h)− 2

h

]
(∵ limh→0 f(x)− 1 and limh→0

f(h)− 2

h
exist)

= 12f(x)− 12

Hence, f(x) is differentiable everywhere.

(ii)
d

dx

[
e−12xf(x)

]
= −12e−12xf(x) + e−12xf ′(x)

= [−12f(x) + 12f(x)− 12] e−12x (By (d) (i))

= −12e−12x

e−12xf(x) =

∫
−12e−12x dx

= e−12x + C

f(0) = 1 + C

2 = 1 + C (By (a))

C = 1

Hence, f(x) = 1 + e12x.
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9. (a) (i) I1 =

∫ π

0

e−x(π − x) dx

= −
∫ π

0

π − x de−x

= −e−x(π − x)
∣∣∣π
0

+

∫ π

0

e−x d(π − x)

= π + e−x
∣∣∣π
0

= π + e−π − 1

(ii) In+1 =

∫ π

0

e−x(π − x)n+1 dx

= −
∫ π

0

(π − x)n+1 de−x

= −e−x(π − x)n+1
∣∣∣π
0

+

∫ π

0

e−x d(π − x)n+1

= πn+1 − (n+ 1)

∫ π

0

e−x(π − x)n dx

= πn+1 − (n+ 1)In

(iii) By repeatedly applying the equation in (a) (ii), we have

In = πn − nIn−1
= πn − nπn−1 + n(n− 1)In−2

...

=

n∑
k=2

(−1)n−k
n!πk

k!
+ (−1)n−1n!I1

=

n∑
k=2

(−1)n−k
n!πk

k!
+ (−1)n−1n!

(
π + e−π − 1

)
(By (a) (i))

=

n∑
k=2

(−1)n−k
n!πk

k!
+ (−1)n−1

n!π

1!
+ (−1)n−1n!e−π + (−1)n

n!π0

0!

In + (−1)nn!e−π =

n∑
k=0

(−1)n−k
n!πk

k!

(−1)n
In
n!

+ e−π =

n∑
k=0

(−1)k
πk

k!

(b) (i) For n ≥ 3,
an+1

an
=

πn+1

(n+ 1)!
· n!

πn

=
π

n+ 1

< 1

an+1 < an
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(ii) From (b) (i), an is strictly decreasing.
an is bounded below because

an =
πn

n!
> 0.

Hence, lim
n→∞

an exists.

0< lim
n→∞

πn

n!
< lim
n→∞

(π
n

)n
0< lim

n→∞
an < 0

By Sandwich Theorem, lim
n→∞

an = 0.

(c)
1

n!

∫ π

0

eπ(π − x)n dx ≤ 1

n!

∫ π

0

eπ(π − 0)n dx

In
n!
≤
∫ π

0

eπ
πn

n!
dx

lim
n→∞

In
n!
≤ lim
n→∞

∫ π

0

eπ
πn

n!
dx

lim
n→∞

In
n!
≤ 0 (By (b) (ii))

In addition,

lim
n→∞

In
n!
≥ lim
n→∞

1

n!

∫ π

0

eπ(π − π)n dx

= 0

By Sandwich Theorem,

lim
n→∞

In
n!

= 0

∞∑
k=0

(−1)k
πk

k!
= lim
n→∞

n∑
k=0

(−1)k
πk

k!

= lim
n→∞

(−1)n
In
n!

+ e−π (By (a) (iii))

= e−π
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10. (a) (i) (1) h(x) =

∫ 2

1

q(t) dt

∫ x

1

p(t)q(t) dt−
∫ 2

1

p(t)q(t) dt

∫ x

1

q(t) dt

h′(x) = p(x)q(x)

∫ 2

1

q(t) dt− q(x)

∫ 2

1

p(t)q(t) dt ∀x ∈ J

(2) By Mean Value Theorem, there exists β ∈ J such that

h′(β) =
h(2)− h(1)

2− 1

p(β)q(β)

∫ 2

1

q(t) dt− q(β)

∫ 2

1

p(t)q(t) dt = 0 (By (a) (i) (1))∫ 2

1

p(t)q(t) dt = p(β)

∫ 2

1

q(t) dt (∵ q(x) > 0 ∀x ∈ J)

(ii)
∫ 2

1

f(x)g′(x) dx =

∫ 2

1

f(x) dg(x)

=
[
f(x)g(x)

]2
1
−
∫ 2

1

g(x) df(x)

= f(2)g(2)− f(1)g(1)−
∫ 2

1

f ′(x)g(x) dx

Since f ′(x) > 0 for all x ∈ J, by using (a) (i) (2), put p = g and q = f ′, there exists c ∈ J
such that∫ 2

1

f ′(x)g(x) dx = g(c)

∫ 2

1

f ′(x) dx

= g(c) [f(2)− f(1)]

Hence,∫ 2

1

f(x)g′(x) dx = f(2)g(2)− f(1)g(1)− g(c) [f(2)− f(1)]

(b) (i)
d

dx
cosx100 = −

(
sinx100

) (
100x99

)
(ii) Let f(x) = − 1

100x99
and g(x) = cosx100.

f ′(x) = − −99

100x100

> 0 ∀x ∈ J
By (a) (ii), there exists c ∈ J such that∫ 2

1

− 1

100x99
dcos

dxcos
x100 dx = − cos 2100

(100)(299)
+

cos 1100

(100)(199)
−
(
cos c100

) [
− 1

(100)(299)
+

1

(100)(199)

]
∣∣∣∣∫ 2

1

sinx100 dx

∣∣∣∣ =

∣∣∣∣∫ 2

1

− 1

100x99
dcos

dxcos
x100 dx

∣∣∣∣
=

∣∣∣∣− cos 2100

(100)(299)
+

cos 1100

(100)(199)
−
(
cos c100

) [
− 1

(100)(299)
+

1

(100)(199)

]∣∣∣∣
≤
∣∣∣∣ 1

100

∣∣∣∣+
∣∣− cos c100

∣∣ ∣∣∣∣− 1

(100)(299)
+

1

100

∣∣∣∣
≤ 1

100
+ (1)

∣∣∣∣ 1

100

∣∣∣∣
=

1
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11. (a) xy = 2

y + x
dy

dx
= 0

dy

dx
= −y

x
Slope of the normal to H at T is

x

y

∣∣∣∣(
t, 2

t

) =
t2

2

Equation of L is

y − 2 =

(
t2

2

)
(x− 2)

t2x− 2y + 4− 2t2 = 0

(b) The parametric equation of the tangent to H at T is(
t+ kt,

2

t
− k · 2

t

)
(5)

Substituting (5) into the equation of L,

(t2)(1 + k)(t)− 2(1− k)

(
2

t

)
+ 4− 2t2 = 0

t3 + kt3 − 2

t
+ k · 4

t
+ 4− 2t2 = 0

k = − t
4 − 2t3 + 4t− 4

t4 + 4

Hence, the point of intersection is(
t

(
1− t4 − 2t3 + 4t− 4

t4 + 4

)
,

2

t

(
1 +

t4 − 2t2 + 4t− 4

t4 + 4

))
=

(
t(2t3 − 4t+ 8

t4 + 4
,

2

t
· 2t4 − 2t3 + 4t

t4 + 4

)
=

(
2t(t3 − 2t+ 4)

t4 + 4
,

4(t3 − t2 + 2)

t4 + 4

)
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(c) (i) The coordinates of M are(
2 + 2

[
2t(t3 − 2t+ 4)

t4 + 4
− 2

]
, 2 + 2

[
4(t3 − t2 + 2

t4 + 4
− 2

])
=

(
4t(t3 − 2t+ 4)

t4 + 4
− 2,

8(t3 − t2 + 2)

t4 + 4
− 2

)

|BM | =

√[
4t(t3 − 2t+ 4)

t4 + 4
− 2− (−2)

]2
+

[
8(t3 − t2 + 2)

t4 + 4
− 2− (−2)

]2
=

√
16t2(t3 − 2t+ 4)2

(t4 + 4)2
+

64(t3 − t2 + 2)2

(t4 + 4)2

= 4

√
(t4 − 2t2 + 4t)2 + 4(t3 − t2 + 2)2

(t4 + 4)2

= 4

√
t8 − 4t6 + 8t5 + 4t4 − 16t3 + 16t2 + 4t6 − 8t5 + 16t3 + 4t4 − 16t2 + 16

(t4 + 4)2

= 4

√
t8 + 8t4 + 16

(t4 + 4)2

= 4

Hence, |BM | is independent of t.

(ii) Slope of BM =

8(t3 − t2 + 2

t4 + 4
− 2− (−2)

4t(t3 − 2t+ 4)

t4 + 4
− 2− (−2)

=
8(t3 − t2 + 2)

4t(t3 − 2t+ 4)

=
2(t+ 1)(t2 − 2t+ 2)

t(t+ 2)(t2 − 2t+ 2)

=
2(t+ 1)

t(t+ 2)

Slope of TB =

2

t
− (−2)

t− (−2)

=
2(1 + t)

t(t+ 2)
Since slope of BM = slope of TB, B, M and T are collinear.
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