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SECTION A (40 marks)
Answer ALL questions in this section.
Write your answers in the AL(E) answer book.

Y
1. Let ¢, =8, a,=66 and a,.,—-8a,, —a, =0 forallpositive integers »n. Using mathematical

induction, prove that a, =(4+ 17 )+ (4 - Jﬁ )" for any positive integer 7 .
(6 marks)

2 Let n be a positive integer. Denote the coefficient of x* in the expansion of (3+x)" by a, . Find
n
@  Da.
k=0
Z": a
(b} A s
= k¥l
n ka
c) —k
( ;l k+1
(7 marks)
3. (a) Resolve —l— into partial fractions.
x(x+2)(x+4)
(b) Let n be a positive integer.

B (@ D E

i Express in the form A4+ + + + , where 4,
® » Zk(k+2)(k+4) n+l n+l n+3 ntd

B, C, D and E are constants.

Gh  'Fnd —
« k(k+2)k+4)
(7 marks)
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4. (a) Express cos36 interms of cos@ .

(6 marks)

(b) Using the substitution x =2cos@ , solve the equation x* -3x+1=0.
g
5. Suppose that the matrix P = [ﬁkk J;Ek] represents the anticlockwise rotation about the origin by an

angle @ in the Cartesian plane, where 0 <@ < .
(a) Find % .

cosa sina

(b) It is known that the matrix ( .
sine —cosa

J represents the reflection in the straight line

y= (tan -g-) x . Let O be the matrix representing the reflection in the straight line

{o)

(i) Write down the matrix Q.

(i) Does the matrix PQ represent a reflection? Explain your answer.

6. Let n be a positive integer.
n+

(a) Let a;,a,,...,a,,; bepositivereal numbers. Define A= Z a, .
k=1
n+l i
(i) Prove that z L Tk=p,
k=1

n+l
(ii) Using Cauchy-Schwarz’s inequality, or otherwise, prove that
k=1

n+l 1

| . n+l1
(b)  Using (a)(ii), prove that kz_; (n+D)(n+2)-2k n(n+2)
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z
i el
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SECTION B (60 marks)
Answer any FOUR questions in this section. Each question carries 15 marks.
Write your answers in the AL(C) answer book.

7. (a)

(b)

(b)

s
Consider the system of linear equations in x, y, z
¥y + (A+Dz = 0
(S): 4Ax + 2y + 2z = u , where 1l,ucR .

X = A4y = 4z = ut

(i) Suppose that u=0 .
(1)  Provethat (S) has non-trivial solutions if and only if 4*+ 4> —241=0 .

(2) Solve (S) when A=1.

(ii) Suppose that u#0 .

(D Find the range of values of A for which (S) has a unique solution.
(2) Solve (S) when (S) has a unique solution.

3 Find 4 and u for which (S) has infinitely many solutions.

(11 marks)
Is there a real solution (x, y,z) ofthe system of linear equations
y + 2z =0
x + 2y + 2z = 1
x - y — 4z =1
satisfying 3x% +2y? +z%> =17 Explain your answer.
(4 marks)

4-b a
]2 where ab>0 .

4—a

} be areal matrixand P = [:

(i) Prove that P is a non-singular matrix.

(i) Evaluate P7'AP .

d 0
(iii) For any positive integer n, find 4, and d, suchthat 4" = P((; i JP_] .
2

(9 marks)

3 4
Let B=[] 0] . For any positive integer n, find B+ B>+ B’ +...4+ B>

(6 marks)
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(a)

(b)

(a)

(®)

()

Let @, and f;, be real numbers satisfying o, > f, >0 .

For any positive integer », define a,,, = -‘la,,z -a,f,+ ﬁ,,z and B,.,=+a,B, .

~
(i) Prove that

1«28,

@ o <a,,

G Bua2Pbu -
(ii) Prove that the sequences {a, | and {8, } converge to the same limit.

(iii) Prove that a,” + 8, =a° + 5, .

Hence, or otherwise, express lima, intermsof @, and f, .

H—p

(10 marks)
Let x; and y; be real numbers such that x; >y, >0 .
For any positive integer n, define x,,, =+/x,», and y,,; = g Zn¥n =
\/xn X VYnt Y
Do limx, and lim y, exist? Explain your answer.
H—ya H—a0
(5 marks)

Let p(x) be a polynomial with real coefficients such that p(n) =p(n—1) for any positive
integer »n. Prove that p(x)=p(0) forall xeR .
(3 marks)

Let f(x) be apolynomial with real coefficients such that xf(x-1)=(x—-x)f(x) . Prove that
(i) if there exists an integer & such that f(k)=0, then f(k+1)=0 ;

(ii) f(x)=0 forall xeR .
(5 marks)

Let g(x) be a polynomial with real coefficients such that xg(x—1)=(x-3)g(x) . Prove that
(M g0)=g()=g(2)=0:

(ii) g(x)=Cx(x-1)(x—2) , where C isa constant.
(7 marks)
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n (a) Let z=cos@+isin@ , where @ eR . Find the four values of z such that Im(z> +2)=0 .

(4 marks)
(b) Let z, and z, betwo of the values of z obtained in (a) such.that Im(z)<0<Im(z,) .
- Z
For any positive integer n, define S, =Zm" , where @=-2 .
2

@
(i)
(iii)

(iv)

)
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r=]
Prove that @’ =1 .

If » isa multiple of 3, provethat S, =0 .

If » isnot a multiple of 3, find S, .

Does there exist an integer m such that (Syo09 + Sag10 + Sz011)™ =2 ? Explain your
answer.

Find all positive integers k such that (8. +(8,4)F + (S,HZ)" =2 for any positive

integer n.
(11 marks)

END OF PAPER
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SECTION A (40 marks)
Answer ALL questions in this section.
Write your answers in the AL(E) answer book.

1.

ta

Let keR and f:R—>R be defined by
k—e** when x<0 ,

f(x)=
Asinx+5cosx when x20 .

It is given that f(x) is continuous at x = 0.
(a) Find k.
(b) Is f(x) differentiableat x=0? Explain your answer.

(c) Find the asymptote(s) of the graph of y=1f(x) .

(7 marks)
h £x53,
Let f:R—> R be an even function such that f(x)= o’ when; VS
x+1 when x>3.
(a) Write down the value of f(-5) .
(b) Sketch the graph of y=f(x) .
(c) Let g:R — R be defined by gx)=f(x+2)-f(x-2) .
(i) Prove that g is an odd function.
(ii) Sketch the graph of y=g(x) .
(7 marks)

1
Let £:R > R bedefinedby f(x)=—F———"
Vx? +2x+5
(a) Prove that (x? +2x+35)f'(x)+(x+Df(x)=0 .
Hence prove that (x* +2x +5) £ (x)+ @n+ D) (x+1) £ (x)+n? £V (x)=0 forany

positive integer n, where £fO=f

(b) Using (a), or otherwise, evaluate f ©®)(-1) and f(-1).
(6 marks)
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(@  Find J'x2 9—x*dx

L&, |, K
(b)  Evaluate lim — Y k9" . ~
n—a@ =) H

(6 marks)

(@  Using the substitution x=5+2sin6 . find I (x—3)(7—x) dx .

1

(b) Let D be the region bounded by the curve y= ((x =3)(7- x)) d and the x-axis. Find the

volume of the solid of revolution generated by revolving D about the x-axis.
(7 marks)

The equation of the hyperbola H is 4x” - y? =144 . Let P be the point (6secd,12tanf) . where

0<6<Z .
2

(a) Prove that P lieson H.
(b) Let L be the normal to H at P.
(i) Find the x-intercept and the y-intercept of L .
(ii) If the area of the region bounded by L, the x-axis and the y-axis is 150, find the

coordinates of P .
(7 marks)
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SECTION B (60 marks)
Answer any FOUR questions in this section. Each question carries 15 marks.
Write your answers in the AL(C) answer book.

7. Let f:R— R bedefinedby f(x)=In(x’-2x+10) .
(a) Find f'(x) and f"(x) .
(2 marks)
(b) Solve each of the following inequalities:
0] f(x)>0,
(ii) f'(x)>0,
(iii) f"(x)>0 .
(3 marks)
(c) Find the relative extreme point(s) and point(s) of inflexion of the graph of y =f(x) .
(3 marks)
(d) Sketch the graph of y=f(x) .
(2 marks)
(e) Find the area of the region bounded by the graph of y=f(x) and the straight line y=Inl8 .
(5 marks)
8 (a) (1) Prove that j2 ]_ dx=1.
o l+sinx
(i)  Evaluate I E A g
o l+sinx
(5 marks)
(b) Let f:[0,7]—R be acontinuous function such that f(x—x)=f(x) forall x<[0,7] .
Using integration by substitution, prove that J. f(x)dx=2 I . f(x)dx .
4] 1]
(3 marks)
(c) Let g:[0,7]—> R be a continuous function such that g(z - x)=—g(x) forall xe[0,7] .
Using the substitution u =7z —x , prove that I 2(x) In(l+e***)dx = %J. g(x)cosxdx .
0 0
(3 marks)
n Cos X
(d) Evaluate J- M!—Jre?—)dx
o0 (l+sinx)
(4 marks)

2011-AL-P MATH 2-5 3 | Gomtolhena:dpagg



) (a) Let f:R—R and g:R — R be increasing continuous functions,
(1) Let F:R > R bedefined by F(x)=x r f(H)g(r) dr - [ .“I £(r) dr]( r g(1) df) .
0 0 0
d x
(1) Provethat —F(x)= _L (£(0) - £(x)) (g(0) - g(x))dr .
(2) Find the least value of F(x) .
) ) 1 1 1
(i)  Using (a)(i), prove that “ﬁ f(x)dx} L g(x)dx] < _[ﬂ £(x) g(x) dx .
I i 1
(i)  Furthermore, if f(x)>0 forall xeR , prove that Uﬂ £(x) dx] < J‘U (f(x))" dx
for any positive integer ».
(11 marks)
(b) Let h:R —> R" be an increasing continuous function, where R™ is the set of positive real
4 2011 4
numbers. Prove that (Iz h(x) de Sl I ] (h(x))m” X .
(4 marks)
10. Denote the set of positive real numbers by R" .
(a) Itis giventhat a,b,s,teR", where a<b and s+1=1. Let f:R" > R beatwice
differentiable function such that f''(x) <0 forall xeR™ .
(i) Let u=sa+th . Using Mean Value Theorem, prove that
f(b)—f(u) <f'u)< f(u)—1f(a)
s(b—a) t(b—a)
(i) Using (a)(i), prove that sf(a)+7f(b) <f(sa+1tb) .
(6 marks)
(b) Let h,k,p,geR", where p+g=1. Using (a), prove that A”k? < ph+qk .
(3 marks)
(c) Let X, X5,...5 X, 4, Ag5 s A, €RT | where Z'lk =1 . Using mathematical induction,

k=1
prove that r[xk‘l" <
k=1 k=1
(6 marks)
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1. Consider the two parabolas B : y*=4x and P,: y®> =8x . Let L_be the tangentto P, at the point
T

8(32,23) , where s>0 .

(a) Find the equation of L .

(2 marks)

(b) L cuts P, atthe points AQ2a*,4a) and B(2S*,4p) . Let L, and L, be the tangents to

P, at 4 and B respectively .

(i)

(iD)

(i)

11-AT-PMATH 27

2
Provethat a + =25 and aﬁz%‘

Let @ be the acute angle between L, and L, .

2\55

(@)) Prove that tanf = > ;
5742

(2) Find the greatest value of & .

Itis giventhat L, and L, intersectat C.

(0 Express the coordinates of C intermsof s.
(2) Find the equation of the locus of C as s varies.
(13 marks)
END OF PAPER
T




