SECTION A (40 marks)

Answer ALL questions in this section

Write your answers in the $\mathrm{AL}(\mathrm{E})$ answer book.

1. A sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=1, a_{2}=3$ and $a_{n+2}=3 a_{n+1}+a_{n}$ for all $n=1,2,3 \ldots$ Using mathematical induction, prove that
$a_{n}=\frac{1}{\sqrt{17}}\left[\left(\frac{3+\sqrt{17}}{2}\right)^{n}-\left(\frac{3-\sqrt{17}}{2}\right)^{n}\right]$ for any positive integer $n . \quad(6$ marks)
2. Let C_{k}^{n} be the coefficient of x^{k} in the expansion of $(1+x)^{n}$.
(a) Using the identity $\left(1-x^{2}\right)^{n}=(1+x)^{n}(1-x)^{n}$, prove that the coefficient of x^{n} in the expansion of $\left(1-x^{2}\right)^{n}$ is $\sum_{k=0}^{n}(-1)^{k}\left(C_{k}^{n}\right)^{2}$.
(b) Evaluate
(i) $\sum_{k=0}^{2005}(-1)^{k}\left(C_{k}^{2005}\right)^{2}$,
(ii) $\sum_{k=0}^{2006}(-1)^{k}\left(C_{k}^{2006}\right)^{2}$.
3. Let $p(x)$ be a polynomial of degree 4 with real coefficients satisfying $p(0)=0$, $p(1)=\frac{1}{2}, p(2)=\frac{2}{3}, p(3)=\frac{3}{4}$ and $p(4)=\frac{4}{5}$
(a) Let $q(x)=(x+1) p(x)-x$.
(i) Evaluate $q(0), q(1), q(2), q(3)$ and $q(4)$.
(ii) Express $q(x)$ as a product of linear polynomials.
(b) Evaluate $p(5)$.
(6 marks)
4.

(a) Resolve $\frac{9 x+36}{x(x+2)(x+3)}$ into partial fractions.
(b) Express $\sum_{k=1}^{n} \frac{9 k+36}{k(k+2)(k+3)}$ in the form $A+\frac{B}{n+1}+\frac{C}{n+2}+\frac{D}{n+3}$, where A, B, C and D are constants.
(c) Is there a positive integer N such that $\sum_{k=1}^{N} \frac{9 k+36}{k(k+2)(k+3)} \geq 8$? Explain your answer.
(7 marks)
5. For every positive integer n, define $x_{n}=\sum_{k=1}^{n} \frac{1}{n+k}$ and $y_{n}=\sum_{k=1}^{n+1} \frac{1}{n+k}$.
(a) Prove that the sequence $\left\{x_{n}\right\}$ is strictly increasing and that the sequence $\left\{y_{n}\right\}$ is strictly decreasing.
(b) Prove that the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge to the same limit.
(7 marks)
6. Let a, b and c be positive real numbers such that $a^{2}+b^{2}+c^{2}=3$.
(a) Using Cauchy-Schwarz's inequality, prove that
(i) $a+b+c \leq 3$.
(ii) $a^{3}+b^{3}+c^{3} \geq 3$.
(b) For every $n=2,3,4 \ldots$, let $P(n)$ be the statement $a^{n}+b^{n}+c^{n} \geq 3$. Prove that for any integer $k \geq 2$,
(i) If $P(k)$ is true, then $P(2 k)$ is true;
(ii) If $P(k)$ is true, then $P(2 k-1)$ is true.

SECTION B (60 marks)

Answer any FOUR questions in this section. Each question carries $\mathbf{1 5}$ marks.

Write you answer in the $\mathrm{AL}(\mathrm{A})$ answer book.

7. Consider the system of linear equations in x, y, z
$(E):\left\{\begin{array}{l}x+a y+z=4 \\ x+(2-a) y+(3 b-1) z=3, \text { where } a, b \in \mathbf{R} .\end{array}\right.$
$2 x+(a+1) y+(b+1) z=7$
(a) Prove that (E) has a unique solution if and only if $a \neq 1$ and $b \neq 0$. Solve (E) in this case
(6 marks)
(b)
(i) For $a=1$, find the value(s) of b for which (E) is consistent, and solve (E) for such value(s) of b.
(ii) Is there a real solution (x, y, z) of

$$
\left\{\begin{array}{l}
x+y+z=4 \\
2 x+2 y+z=6 \\
4 x+4 y+3 z+14
\end{array}\right.
$$

$$
\text { satisfying } x^{2}-2 y^{2}-z=14 \text { ? Explain you answer. }
$$

(c) Is (E) consistent for $b=0$? Explain your answer.
8. Let $M=\left(\begin{array}{cc}m & -m \\ m & m\end{array}\right)$, where $m>0$.
(a) Evaluate M^{2}.
(1 mark)
(b) Let $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a non-zero real matrix such that $M X=X M$.
(i) Prove that $c=-b$ and $d=a$.
(ii) Prove that X is a non-singular matrix.
(iii) Suppose that $X-6 X^{-1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(1) Find X.
(2) If $a>0$ and $(M-k X)^{2}=-M^{2}$, express k in terms of m.
(10 marks)
(c) Using the result of (b)(iii)(2), find two real matrices P and Q, other than M and $-M$, such that $P^{4}=Q^{4}=M^{4}$.
(4 marks)
9.
(a) Let $b, c, d \in \mathbf{R}$ and α, β and γ be the roots of the equation $x^{3}+b x^{2}+c x+d=0$.
for every positive integer k, define $S_{k}=\alpha^{k}+\beta^{k}+\gamma^{k}$.
(i) Using relations between coefficients and roots, express S_{1}, S_{2} and S_{3} in terms of b, c and d.
(ii) Prove that $S_{k+1}+b S_{k+2}+c S_{k+1}+d S_{k}=0$ for any positive integer k.
(iii) Suppose $d=b c$. Using the results of (a)(i) and (a)(ii) prove that
$S_{2 n 1}+b S_{2 n}=(-1)^{n} 2 b c^{n}$ and $S_{2 n}+b S_{2 n-1}=(-1)^{n} 2 c^{n}$ for any positive integer n.
(11 marks)
(b) Find three numbers such that their sum is 3 , the sum of their square is 3203 and the sum of their cubes is 9603 .
(4 marks)
10.
(a) By differentiation $f(x)=x \ln x-x$ prove that $x \ln x-1+1 \geq 0$ for all $x>0$.
(4 marks)
(b) Let a be a positive real number. Define $g(x)=\frac{a^{x}-1}{x}$ for all $x>0$. Prove that g is increasing.
(3 marks)
(c) Let p and q be real numbers such that $p>q>0$.
(i) Suppose that $a_{l}, a_{2}, \ldots, a_{n}$ are positive real numbers satisfying
$\sum_{k=1}^{n} a_{k}^{q}=n$.
Using (b), prove that $\sum_{k=1}^{n} a_{k}^{p} \geq n$.
(ii) Suppose that $b_{1}, b_{2}, \ldots, b_{n}$ are positive real numbers.

Using (c)(i), prove that $\left(\frac{1}{n} \sum_{k=1}^{n} b_{k}^{p}\right)^{\frac{1}{p}} \geq\left(\frac{1}{n} \sum_{k=1}^{n} b_{k}\right)^{\frac{1}{q}}$.
Hence prove that $\left(\frac{1}{n} \sum_{k=1}^{n} b_{k}^{\frac{1}{p}}\right)^{p} \geq\left(\frac{1}{n} \sum_{k=1}^{n} b_{k}^{\frac{1}{q}}\right)^{q}$.
(8 marks)
11. Let $0<\theta<\pi$.
(a) Solve the equation $z^{2}=\cos \theta+i \sin \theta$.
(2 marks)
(b) Let u_{1} and u_{2} be the roots of the equation $(u+1)^{2}=\cos \theta+i \sin \theta$, where $\operatorname{Im}\left(u_{1}\right)<0$.
(i) Find u_{1} and u_{2}.
(ii) Prove that $\frac{u_{2}}{u_{1}}=-i \tan \frac{\theta}{4}$.

Hence, find all the integers n for which $\left(\frac{u_{2}}{u_{1}}\right)^{n}$ is a real number.
(iii) Prove that $u_{1}^{12}=2^{12} \cos ^{12} \frac{\theta}{4}(\cos 3 \theta+i \sin 3 \theta)$.

Hence, find all the values of θ for which $u_{1}^{12}-u_{2}^{12}$ is a real
number.
(13 marks)

END OF PAPER

SECTION A(40 marks)

Answer ALL questions in this section.

Write your answer in the $\mathrm{AL}(\mathrm{E})$ answer book

1. Evaluate
(a) $\lim _{x \rightarrow 0} \frac{\int^{3 x+1} \sqrt{t^{5}+t^{3}+1} d t}{\ln (x+1)}$,
(b) $\lim _{x \rightarrow 0} \sin x \sin \frac{1}{x}$.
(6 marks)
2. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=\left\{\begin{array}{l}-1 \text { when } x \text { is an even number, } \\ 2 \text { when } x \text { is not an even number. }\end{array}\right.$ (a)
(i) Sketch the graph of $y=f(x)$ for $-4 \leq x \leq 4$.
(ii) Is f a periodic function? Explain your answer.
(b) Let $g: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $g(x)=f(x+1)+f(x)$.
(i) Sketch the graph of $y=g(x)$ for $-4 \leq x \leq 4$.
(ii) Is g an injective function? Explain your answer.

(7 marks)

3. For any positive integers m and n, define $I_{m, n}=\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{m} \theta}{\cos ^{n} \theta} d \theta$.
(a) Prove that $I_{m+2, n+2}=\frac{1}{n+1}\left(\frac{1}{\sqrt{2}}\right)^{m-n}-\frac{m+1}{n+1} I_{m, n}$.
(b) Using the substitution $u=\cos \theta$, evaluate $I_{3,1}$.
(c) Using the results of (a) and (b), evaluate $I_{7,5}$
(7 marks)
4.

(a) Using the substitution $t=\sqrt{1+x^{2}}$, find $\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x$.
(b) Evaluate $\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{k=1}^{n} \frac{k^{3}}{\sqrt{n^{2}+k^{2}}}$.
5.
(a) Find $\int \ln y d y$.
(b) Find the volume of the solid of revolution generated by revolving the region bounded by the curve $y=2^{x^{2}}$ and the straight line $y=2$ about the y-axis
6. Let the equation of ellipse E be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a and b are two distinct positive constants. The coordinates of the points P and Q are $(a \cos \theta, b \sin \theta)$ and $((a+b) \cos \theta,(a+b) \sin \theta)$ respectively, where $0<\theta<\frac{\pi}{2}$.
(a) Prove that
(i) P lies on E,
(ii) The straight line passing through P and Q is the normal to E at P.
(b) Let c be a constant such that the straight line $x \sin \theta-y \cos \theta=c$ is a tangent to E. Express the distance between P and Q in terms of c.

SECTION B (60 marks)

Answer any FOUR questions in this section. Each question carries 15 marks

Write your answer in the AL (A) answer book.
7. Let $f(x)=\frac{x^{2}-x-6}{x+6} \quad(x \neq 6)$.
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(2 marks)
(b) Solve each of the following inequalities:
(i) $f^{\prime}(x)>0$
(ii) $f^{\prime}(x)<0$
(iii) $f^{\prime \prime}(x)>0$
(iv) $f^{\prime \prime}(x)<0$
(c) Find the relative extreme point(s) of the graph of $y=f(x)$.
(d) Find the asymptote(s) of the graph of $y=f(x)$
(e) Sketch the graph of $y=f(x)$
(2 marks)
(f) Find the area of the region bounded by the graph of $y=f(x)$ and the x -axis.
(3 marks)
(a)
(i) For any two distinct positive integers m and n, evaluate $\int_{0}^{\pi} \cos m x \cos n x d x$.
(ii) For any positive integer n, evaluate $\int_{0}^{\pi} \cos n x d x$ and $\int_{0}^{\pi} \cos ^{2} n x d x$.
(5 marks)
(b) Using integration by parts, prove that $\int_{0}^{\pi} x^{2} \cos n x d x=\frac{(-1)^{n} 2 \pi}{n^{2}}$ for any positive integer n.
(3 marks)
(c) Let N be a positive integer and $f(x)=a_{0}+\sum_{m=1}^{N} a_{m} \cos m x$, where a_{0}, a_{1}, \ldots a_{N} are constants. It is given that $\int_{0}^{\pi}\left(f(x)-x^{2}\right) d x=0$ and
$\int_{0}^{\pi}\left(f(x)-x^{2}\right) \cos n x d x=0$ for all $n=1,2, \ldots, N$.
(i) Find a_{0}.
(ii) Prove that $a_{n}=\frac{(-1)^{n} 4}{n^{2}}$ for all $n=1,2, \ldots, N$.
(iii) For any positive integer k, let $I_{k}=\int_{0}^{\pi}\left(f(x)-x^{2}\right) \cos (N+k) x d x$.

$$
\text { Evaluate } \lim _{k \rightarrow \infty} I_{k} \text {. }
$$

(7 marks)
9.
(a) Prove that $\lim _{x \rightarrow 0^{+}} \frac{x^{-n}}{e^{\frac{1}{x}}}=0$ for any positive integer n.
(3 marks)
(b) Let $f(x)=\left\{\begin{array}{l}0 \text { when } x \leq 0 . \\ e^{\frac{-1}{x}} \text { when } x>0 .\end{array}\right.$
(i) Find $f^{\prime}(x)$ for all $x \neq 0$.
(ii) Prove that $f^{\prime}(0)=0$.

Hence prove that $f^{\prime}(x)$ is continuous at $x=0$.
(iii) For any $x>0$, prove that $f^{(n)}(x)=e^{\frac{-1}{x}} p_{n}\left(\frac{1}{x}\right)$ for any positive integer

$$
n \text {, where } p_{n}(t) \text { is a polynomial in } t .
$$

(iv) Prove that $f^{(n)}(0)=0$ for any positive integer n.
(12 marks)
10. Let the equation of the parabola P be $y^{2}=4 a x$, where a is a non-zero constant.
(a) Find the equation of the normal to P at the point $\left(a t^{2}, 2 a t\right)$. (3 marks)
(b) The normals to P at two distinct points $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ intersect at the point (h, k). Let $t_{3}=-\left(t_{1}+t_{2}\right)$.
(i) Prove that the roots of the equation $a t^{3}+(2 a-h) t-k=0$ are t_{1}, t_{2} and t_{3}.
(ii) Does the normal to P at the point $\left(a t_{3}^{2}, 2 a t_{3}\right)$ pass through the point (h, k) ? Explain your answer.
(iii) Express $t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{1}$ and $t_{1} t_{2} t_{3}$ in terms of a, h and $k . \quad(8$ marks)
(c) Let A and B be two points on P at which the normals to P are perpendicular to each other. Using the results of (b)(iii), or otherwise, find the equation of the locus of the point of intersection of the two normals as A and B vary.
(a) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be continuous on $[a, b]$ and differentiable in (a, b), where $a<b$. Suppose that $g(a) \neq g(b)$ and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Define $h(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a))$ for all $x \in \mathbf{R}$.
(i) Find $h(a)$ and $h(b)$.
(ii) Using Meaning Value Theorem, prove that there exists $\beta \in(a, b)$

$$
\text { such that } \frac{f^{\prime}(\beta)}{g^{\prime}(\beta)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

(b) Let $u: \mathbf{R} \rightarrow \mathbf{R}$ be twice differentiable.

For each $x \in \mathbf{R}, F: \mathbf{R} \rightarrow \mathbf{R}$ and $G: \mathbf{R} \rightarrow \mathbf{R}$ be defined by
$F(t)=u(x)-u(t)-u^{\prime}(t)(x-t)$ and $G(t)=\frac{(x-t)^{2}}{2}$. For each $c \neq x$, prove
that there exist $\gamma \in I$ such that $\frac{F^{\prime}(\gamma)}{G^{\prime}(\gamma)}=\frac{F(c)}{G(c)}$ and
$u(x)=u(c)+u^{\prime}(c)(x-c)+\frac{u^{\prime \prime}(\gamma)}{2}(x-c)^{2}$, where I is the open interval with
end points c and x. (5 marks)
(c) Let $v: \mathbf{R} \rightarrow \mathbf{R}$ be twice differentiable. It is given that $\lim _{x \rightarrow 0} \frac{v(x)}{x}=2006$.
(i) Prove that $v(0)=0$. Hence find $v^{\prime}(0)$.
(ii) Suppose that $v^{\prime \prime}(x) \geq 2$ for all $x \in \mathbf{R}$. Prove that $v(x) \geq 2006 x+x^{2}$ for all $x \in \mathbf{R}$.
(5 marks)

