2002－AL P MATH

# HONG KONG EXAMINATIONS AUTHORITY <br> HONG KONG ADVANCED LEVEL EXAMINATION 2002 

## PURE MATHEMATICS A－LEVEL PAPER 1

## $8.30 \mathrm{am}-11.30 \mathrm{am}$（3 hours）

This paper must be answered in English

1．This paper consists of Section A and Section B．
2．Answer ALL questions in Section A and any FOUR questions in Section B．
3．You are provided with one $\mathrm{AL}(\mathrm{E})$ answer book and four $\mathrm{AL}(\mathrm{D})$ answer books．
Section A：Write your answers in the $\mathrm{AL}(\mathrm{E})$ answer book．
Section B：Use a separate $\operatorname{AL}(\mathrm{D})$ answer book for each question and put the question number on the front cover of each answer book．

4．The four $\mathrm{AL}(\mathrm{D})$ answer books should be tied together with the green tag provided The $\mathrm{AL}(\mathrm{E})$ answer book and the four $\mathrm{AL}(\mathrm{D})$ answer books must be handed in separately at the end of the examination．
5．Unless otherwise specified，all working must be clearly shown．
○香港考試局 保留版䍜 Hong Kong Examinations A
All Rights Reserved 2002

## 2002－AL－P MATH 1－1

FORMULAS FOR REFERENCE
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$ $\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
$\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$
$\sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$
$\cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$
$\cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$
$2 \sin A \cos B=\sin (A+B)+\sin (A-B)$
$2 \cos A \cos B=\cos (A+B)+\cos (A-B)$ $2 \sin A \sin B=\cos (A-B)-\cos (A+B)$

SECTION A（ 40 marks）
Answer ALL questions in this section
Write your answers in the AL（E）answer book．

1．A sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=1, a_{2}=3$ and $a_{n+2}=2 a_{n+1}+a_{n}$ for $n=1,2,3, \cdots$ ．Prove by mathematical induction that
$a_{n}=\frac{(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{2}$ for $n=1,2,3, \cdots$ ．

2．（a）Express $\left|\frac{z-1}{z-4}\right|=2$ in the form of $|z-c|=r$ ，where $c$ and $r$ are constants．
（b）Shade the region represented by $\left\{z \in \mathbf{C}:\left|\frac{z-1}{z-4}\right|<2\right\}$ in the Argand plane．

3．（a）Write down the matrix $A$ representing the rotation in the Cartesian plane anticlockwise about the origin by $45^{\circ}$
（b）Write down the matrix $B$ representing the enlargement in the Cartesian plane with scale factor $\sqrt{2}$
（c）Let $X=\binom{x}{y}$ and $V=B A X$ ，where $A$ and $B$ are the matrices defined in（a）and（b）．If $V^{t}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) V=-4$ ，express $y$ in terms of $x$ ．

4．Let $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)$ and $\mathbf{a}=\mathbf{i}, \mathbf{b}=\mathbf{i}+\mathbf{j}, \mathbf{c}=\mathbf{j}+\mathbf{k}$ ．
（a）Prove that a is not perpendicular to $\mathbf{b} \times \mathbf{c}$ ．
（b）Find all unit vectors which are perpendicular to both a and $\mathbf{b} \times \mathbf{c}$
（c）If $\theta \in[0, \pi]$ is the angle between $\mathbf{a}$ and $\mathbf{b} \times \mathbf{c}$ ，prove that $\frac{\pi}{4}<\theta<\frac{\pi}{3}$

5．（a）Let $\mathrm{f}(x)$ and $\mathrm{g}(x)$ be polynomials． Prove that a non－zero polynomial $\mathrm{u}(x)$ is a common factor of $\mathrm{f}(x)$ and $\mathrm{g}(x)$ if and only if $\mathrm{u}(x)$ is a common factor of $\mathrm{f}(x)-\mathrm{g}(x)$ and $\mathrm{g}(x)$ ．
（b）Let $\mathrm{f}(x)=x^{4}-3 x^{3}+6 x^{2}-5 x+3$ and $\mathrm{g}(x)=x^{4}-4 x^{3}+8 x^{2}-7 x+4$ ．
Using（a）or otherwise，find the H．C．F．of $\mathrm{f}(x)$ and $\mathrm{g}(x)$
（7 marks）
6．For $k=1,2,3$ ，let $z_{k}=\cos \theta_{k}+i \sin \theta_{k}$ be complex numbers，where $\theta_{1}+\theta_{2}+\theta_{3}=2 \pi$
（a）Evaluate $z_{1} z_{2} z_{3}$
（b）Prove that $\cos \theta_{k}=\frac{1}{2}\left(z_{k}+\frac{1}{z_{k}}\right)$ and $\cos 2 \theta_{k}=\frac{1}{2}\left(z_{k}^{2}+\frac{1}{z_{k}}\right)$ ．
Hence or otherwise，prove that
$\cos 2 \theta_{1}+\cos 2 \theta_{2}+\cos 2 \theta_{3}=4 \cos \theta_{1} \cos \theta_{2} \cos \theta_{3}-1$.

2002－AL－MATH $1-3$
5 A．（C）保留版權
Go on to the next page，

7．（a）Let $m$ and $k$ be positive integers and $k \leq m$ ． Prove that $\frac{m(m-1) \cdots(m-k+1)}{m^{k}}<\frac{(m+1) m \cdots(m-k+2)}{(m+1)^{k}}$ for $k>1$ Prove that the above inequality does not hold when $k=1$ ．
（b）Let $m$ be a positive integer．
Using（a）or otherwise，prove that $\left(1+\frac{1}{m}\right)^{m}<\left(1+\frac{1}{m+1}\right)^{m+1}$ ．$\quad(6$ marks $)$

## SECTION B（ 60 marks ）

Answer any FOUR questions in this section．Each question carries 15 marks． Use a separate $A L(D)$ answer book for each question．

8．（a）Consider the system of linear equations in $x, y, z$
（S）：$\left\{\begin{aligned} a x-2 y+z & =0 \\ x-y+2 z & =b \\ y+a z & =b\end{aligned}\right.$ ，where $a, b \in \mathbf{R}$
（i）Show that（ $S$ ）has a unique solution if and only if $a^{2} \neq 1$ ． Solve $(S)$ in this case．
（ii）For each of the following cases，determine the value（s）of $b$ for which（S）is consistent，and solve（S）for such value（s）of $b$ ．
（1）$a=1$ ，
（2）$a=-1$ ．

## （9 marks）

（b）Consider the system of linear equations in $x, y, z$
$(T):\left\{\begin{aligned} a x-2 y+z & =0 \\ x-y+2 z & =-1 \\ y+a z & =-1 \\ 5 x-2 y+z & =a\end{aligned}\right.$ ，where $a \in \mathbf{R}$
Find all the values of $a$ for which $(T)$ is consistent． Solve $(T)$ for each of these values of $a$ ．
（6 marks）

9. Vectors $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ in $\mathbf{R}^{3}$ are said to be orthogonal if and only if
$\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{u}=\mathbf{0}$
(a) (i) Show that if $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ are non-zero orthogonal vectors, then $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ are linearly independent.
(ii) Give a counter example to show that the converse of the statement in (i) is not true.

## (6 marks)

(b) Let $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$ be three non-zero orthogonal vectors in $\mathbf{R}^{3}$
(i) By computing the product

$$
\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right)\left(\begin{array}{lll}
u_{1} & v_{1} & w_{1} \\
u_{2} & v_{2} & w_{2} \\
u_{3} & v_{3} & w_{3}
\end{array}\right),
$$

show that
$\left|\begin{array}{lll}u_{1} & v_{1} & w_{1} \\ u_{2} & v_{2} & w_{2} \\ u_{3} & v_{3} & w_{3}\end{array}\right| \neq 0$
(ii) Let $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)$ be a vector in $\mathbf{R}^{3}$. Show that $\mathbf{p}$ is a linear combination of $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$
(6 marks)
(c) Let $\mathbf{x}=\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right), \mathbf{y}=(0,1,0), \mathbf{z}=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$ and $\mathbf{q}=(-1,2,0)$ be vectors in $\mathbf{R}^{3}$
(i) Show that $\mathbf{x}, \mathbf{y}$ and $\mathbf{z}$ are orthogonal.
(ii) Express $\mathbf{q}$ as a linear combination of $\mathbf{x}, \mathbf{y}$ and $\mathbf{z}$
(3 marks)
10. (a) Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers and $b_{1}, b_{2}, \ldots, b_{n}$ be non-zero real numbers
By considering $\sum_{i=1}^{n}\left(a_{i} x+b_{i}\right)^{2}$, or otherwise, prove Schwarz's inequality $\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)$, and that the equality holds if and only if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}$

## (6 marks)

(b)
(i) Prove that $\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)^{2} \leq \frac{\sum_{i=1}^{n} x_{i}^{2}}{n}$, where $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers.
(ii) Prove that $\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} \lambda_{i}\right)\left(\sum_{i=1}^{n} \lambda_{i} x_{i}^{2}\right)$, where $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are positive numbers.
Find a necessary and sufficient condition for the equality to hold.
(iii) Using (b)(ii) or otherwise, prove that
$\left(\frac{y_{1}}{t}+\frac{y_{2}}{t^{2}}+\cdots+\frac{y_{n}}{t^{n}}\right)^{2}<\frac{y_{1}{ }^{2}}{t}+\frac{y_{2}{ }^{2}}{t^{2}}+\cdots+\frac{y_{n}{ }^{2}}{t^{n}}$, where $y_{1}, y_{2}, \ldots, y_{n}$ are real numbers, not all zero, and $t \geq 2$. (9 marks)

11. (a) Let $\mathrm{f}(x)=x^{3}-3 p x+1$, where $p \in \mathbf{R}$.
(i) Show that the equation $\mathrm{f}(x)=0$ has at least one real root.
(ii) Using differentiation or otherwise, show that if $p \leq 0$, then the equation $\mathrm{f}(x)=0$ has one and only one real root.
(iii) If $p>0$, find the range of values of $p$ for each of the following cases:
(1) the equation $\mathrm{f}(x)=0$ has exactly one real root,
(2) the equation $\mathrm{f}(x)=0$ has exactly two distinct real roots,
(3) the equation $\mathrm{f}(x)=0$ has three distinct real roots.
(9 marks)
(b) Let $\mathrm{g}(x)=x^{4}+4 x+a$, where $a \in \mathbf{R}$
(i) Prove that the equation $\mathrm{g}(x)=0$ has at most two real roots.
(ii) Prove that the equation $\mathrm{g}(x)=0$ has two distinct real roots if and only if $a<3$.
12. (a) Let $A$ be a $3 \times 3$ matrix such that
$A^{3}+A^{2}+A+I=0$,
where $I$ is the $3 \times 3$ identity matrix
(i) Prove that $A$ has an inverse, and find $A^{-1}$ in terms of $A$.
(ii) Prove that $A^{4}=I$
(iii) Prove that $\left(A^{-1}\right)^{3}+\left(A^{-1}\right)^{2}+A^{-1}+I=0$.
(iv) Find a $3 \times 3$ invertible matrix $B$ such that $B^{3}+B^{2}+B+I \neq 0$
(b) Let $X=\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & -1\end{array}\right)$
(i) Using (a)(i) or otherwise, find $X^{-1}$.
(ii) Let $n$ be a positive integer. Find $X^{n}$
(iii) Find two $3 \times 3$ matrices $Y$ and $Z$, other than $X$, such that $Y^{3}+Y^{2}+Y+I=0, Z^{3}+Z^{2}+Z+I=0$


13．Let $\left\{x_{n}\right\}$ be a sequence of real numbers such that $x_{1}>x_{2}$ and $3 x_{n+2}-x_{n+1}-2 x_{n}=0$ for $n=1,2,3 \ldots$ ．
（a）（i）Show that for $n \geq 1, x_{n+2}-x_{n}=(-1)^{n} \cdot \frac{2^{n-1}}{3^{n}}\left(x_{1}-x_{2}\right)$
（ii）Show that the sequence $\left\{x_{1}, x_{3}, x_{5}, \ldots\right\}$ is strictly decreasing and that the sequence $\left\{x_{2}, x_{4}, x_{6}, \ldots\right\}$ is strictly increasing．
（5 marks）
（b）（i）For any positive integer $n$ ，show that $x_{2 n}<x_{2 n-1}$ ．
（ii）Show that the sequences $\left\{x_{1}, x_{3}, x_{5}, \ldots\right\}$ and $\left\{x_{2}, x_{4}, x_{6}, \ldots\right\}$ converge to the same limit． （6 marks）
（c）By considering $\sum_{n=1}^{p}\left(x_{n+2}-x_{n}\right)$ or otherwise，find $\lim _{n \rightarrow \infty} x_{n}$ in terms of $x_{1}$ and $x_{2}$ ．
［You may use the fact，without proof，that from（b）（ii）， $\lim _{n \rightarrow \infty} x_{n}$ exists．］
（4 marks）

## END OF PAPER

$1.30 \mathrm{pm}-4.30 \mathrm{pm}$（3 hours）
This paper must be answered in English

1．This paper consists of Section A and Section B
2．Answer ALL questions in Section A and any FOUR questions in Section B．
3．You are provided with one $\mathrm{AL}(\mathrm{E})$ answer book and four $\mathrm{AL}(\mathrm{D})$ answer books． Section A：Write your answers in the $\operatorname{AL}(\mathrm{E})$ answer book．
Section B：Use a separate AL（D）answer book for each question and put the question number on the front cover of each answer book．

4．The four $\mathrm{AL}(\mathrm{D})$ answer books should be tied together with the green tag provided． The $\mathrm{AL}(\mathrm{E})$ answer book and the four $\mathrm{AL}(\mathrm{D})$ answer books must be handed in separately at the end of the examination．
5．Unless otherwise specified，all working must be clearly shown

## ©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2002

## FORMULAS FOR REFERENCE

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
& \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \\
& \cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} \\
& 2 \sin A \cos B=\sin (A+B)+\sin (A-B) \\
& 2 \cos A \cos B=\cos (A+B)+\cos (A-B) \\
& 2 \sin A \sin B=\cos (A-B)-\cos (A+B)
\end{aligned}
$$

## ECTION A (40 marks)

nswer ALL questions in this section.
Write your answers in the AL(E) answer book

1. Find the indefinite integral $\int \frac{3-x}{(1+x)\left(1+x^{2}\right)} \mathrm{d} x$

Hence evaluate the improper integral $\int_{0}^{\infty} \frac{3-x}{(1+x)\left(1+x^{2}\right)} \mathrm{d} x$
2. Let $\mathrm{f}(x)= \begin{cases}a x & \text { if } x \leq \frac{\pi}{2}, \\ e^{b x} \sin x & \text { if } x>\frac{\pi}{2} .\end{cases}$

If f is continuous at $\frac{\pi}{2}$, show that $\frac{a \pi}{2}=e^{\frac{b \pi}{2}}$
Furthermore, if f is differentiable at $\frac{\pi}{2}$, find the values of $a$ and $b$.
(5 marks)
3. Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function satisfying the following conditions:
(i) $\lim _{x \rightarrow 0} \frac{\mathrm{f}(x)-1}{x}=1$;
(ii) $\mathrm{f}(x+y)=\mathrm{f}(x) \mathrm{f}(y)$ for all $x$ and $y$.
(a) Prove that $\mathrm{f}^{\prime}(x)$ exists and $\mathrm{f}^{\prime}(x)=\mathrm{f}(x)$ for every $x \in \mathbf{R}$.
(b) By considering the derivative of $\frac{\mathrm{f}(x)}{e^{x}}$, show that $\mathrm{f}(x)=e^{x}$.
(5 marks)

4．The equation of a straight line $\ell$ in $\mathbf{R}^{3}$ is

$$
\left\{\begin{array}{l}
x=t \sqrt{3} \\
y=t \sqrt{3} \\
z=3-t \sqrt{2}
\end{array}, t \in \mathbf{R} .\right.
$$

Let $A$ and $B$ be two points on $\ell$ with $O A=O B=r$ ，where $O$ is the origin．
（a）Express the distance between $A$ and $B$ in terms of $r$ ．
（b）If $\triangle O A B$ is an equilateral triangle，find the value of $r$ ．

5．（a）If the function $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ is both even and odd，show that $\mathrm{g}(x)=0$ for all $x \in \mathbf{R}$
（b）For any function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ ，define
$\mathrm{F}(x)=\frac{1}{2}[\mathrm{f}(x)+\mathrm{f}(-x)]$ and $\mathrm{G}(x)=\frac{1}{2}[\mathrm{f}(x)-\mathrm{f}(-x)]$
（i）Show that F is an even function and G is an odd function．
（ii）If $\mathrm{f}(x)=\mathrm{M}(x)+\mathrm{N}(x)$ for all $x \in \mathbf{R}$ ，where M is even and N is odd，show that $\mathrm{M}(x)=\mathrm{F}(x)$ and $\mathrm{N}(x)=\mathrm{G}(x)$ for all $x \in \mathbf{R}$

6．（a）Find $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}$ ．
（b）Let $\mathrm{f}(t)=\left\{\begin{array}{cc}\frac{\sin t}{t} & \text { if } t \neq 0, \\ 1 & \text { if } t=0 .\end{array}\right.$
Find $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \mathrm{f}(t) \mathrm{d} t-x}{x^{3}}$
（6 marks）

7．Let $\Gamma$ be the curve with polar equation $r=1-\cos 4 \theta, 0 \leq \theta \leq 2 \pi$
（a）Find the polar coordinates of all the points on $\Gamma$ that are farthest from the pole $O$
（b）Sketch the curve $\Gamma$
（c）Find the area enclosed by $\Gamma$ ．

## SECTION B（ 60 marks） <br> Answer any FOUR questions in this section．Each question carries 15 marks． Use a separate AL（D）answer book for each question．

8．Let $\mathrm{f}(x)=x^{2}-\frac{8}{x-1} \quad(x \neq 1)$
（a）Find $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$
（2 marks）
（b）Determine the range of values of $x$ for each of the following cases
（i） $\mathrm{f}^{\prime}(x)>0$ ，
（ii） $\mathrm{f}^{\prime}(x)<0$ ，
（iii） $\mathrm{f}^{\prime \prime}(x)>0$ ，
（iv） $\mathrm{f}^{\prime \prime}(x)<0$ ．
（3 marks）
（c）Find the relative extreme point（s）and point（s）of inflexion of $\mathrm{f}(x)$
（d）Find the asymptote（s）of the graph of $\mathrm{f}(x)$ ．
（2 marks）
（1 mark）
（e）Sketch the graph of $\mathrm{f}(x)$
（2 marks）
（f）Let $\mathrm{g}(x)=\mathrm{f}(|x|) \quad(|x| \neq 1)$ ．
（i）Is $\mathrm{g}(x)$ differentiable at $x=0$ ？Why？
（ii）Sketch the graph of $\mathrm{g}(x)$ ．
（5 marks）

9．（a）Find $\int e^{-x} \sin x d x$ ．
（b）Let $\mathrm{f}: \mathbf{R} \rightarrow[0, \infty)$ be a periodic function with period $T$
（i）Prove that $\int_{a+k T}^{b+k T} e^{-x} \mathrm{f}(x) \mathrm{d} x=e^{-k T} \int_{a}^{b} e^{-x} \mathrm{f}(x) \mathrm{d} x$ for any positive integer $k$ ．
（ii）Let $I_{n}=\int_{0}^{n T} e^{-x} \mathrm{f}(x) \mathrm{d} x$ ．
Prove that $I_{n}=\frac{1-e^{-n T}}{1-e^{-T}} I_{1}$ for any positive integer $n$
（iii）If $\ell$ is a positive number and $n$ is a positive integer such that $n T \leq \ell \leq(n+1) T$ ，prove that

$$
\frac{1-e^{-n T}}{1-e^{-T}} I_{1} \leq \int_{0}^{\ell} e^{-x} \mathrm{f}(x) \mathrm{d} x \leq \frac{1-e^{-(n+1) T}}{1-e^{-T}} I_{1}
$$ Hence find the improper integral $\int_{0}^{\infty} e^{-x} \mathrm{f}(x) \mathrm{d} x$ in terms of $I_{1}$ and $T$ ．

（c）Using the results of（a）and（b）（iii），evaluate $\int_{0}^{\infty} e^{-x}|\sin x| \mathrm{d} x$ ．
10. Let f and g be continuous functions defined on $[0,1]$ such that f is decreasing and $0 \leq \mathrm{g}(x) \leq 1$ for all $x \in[0,1]$
For $x \in[0,1]$, define $\mathrm{G}(x)=\int_{0}^{x} \mathrm{~g}(t) \mathrm{d} t$ and
$\phi(x)=\int_{0}^{\mathrm{G}(x)} \mathrm{f}(t) \mathrm{d} t-\int_{0}^{x} \mathrm{f}(t) \mathrm{g}(t) \mathrm{d} t$.
(a) (i) Prove that $\mathrm{G}(x) \leq x$. Hence prove that $\phi^{\prime}(x) \geq 0$ for all $x \in(0,1)$.
(ii) Evaluate $\phi(0)$ and hence prove that $\int_{0}^{1} \mathrm{f}(t) \mathrm{g}(t) \mathrm{d} t \leq \int_{0}^{\mathrm{G}(1)} \mathrm{f}(t) \mathrm{d} t$
(7 marks)
(b) Let $\mathrm{H}(x)=\int_{0}^{x}[1-\mathrm{g}(t)] \mathrm{d} t$ for all $x \in[0,1]$.
(i) Prove that $\mathrm{G}(1)+\mathrm{H}(1)=1$
(ii) Using (a)(ii), prove that $\int_{1-\mathrm{G}(1)}^{1} \mathrm{f}(t) \mathrm{d} t \leq \int_{0}^{1} \mathrm{f}(t) \mathrm{g}(t) \mathrm{d} t$ (5 marks)
(c) Using the results of (a)(ii) and (b)(ii), prove that
$\int_{\frac{n}{n+1}}^{1} \mathrm{f}(t) \mathrm{d} t \leq \int_{0}^{1} \mathrm{f}(t) \cdot t^{n} \mathrm{~d} t \leq \int_{0}^{\frac{1}{n+1}} \mathrm{f}(t) \mathrm{d} t$, where $n$ is a positive integer Hence show that $\lim _{n \rightarrow \infty} \int_{0}^{1} \mathrm{f}(t) \cdot t^{n} \mathrm{~d} t=0$.
11. Consider the parabolas $C_{1}: y^{2}=4(x+1)$ and $C_{2}: y^{2}=4 x$ Let $P\left(p^{2}-1,2 p\right)$ be a point on $C_{1}$. The two tangents drawn from $P$ to $C_{2}$ touch $C_{2}$ at the points $S\left(s^{2}, 2 s\right)$ and $T\left(t^{2}, 2 t\right)$.
(a) Find the equations of $P S$ and $P T$ and hence show that $s+t=2 p$, $s t=p^{2}-1$
(4 marks)
(b) $\quad Q\left(q^{2}, 2 q\right)$ is a point on the arc $S T$ of $C_{2}$. Prove that the area of $\triangle S Q T$ is a maximum if and only if $q=p$.
(6 marks)
(c) Let $Q$ be the point in (b) where the area of $\Delta S Q T$ is a maximum. If the straight line $P Q$ cuts the chord $S T$ at $M$, find the equation of the locus of $M$ as $P$ moves along $C_{1}$.
(5 marks)

12．（a）Let $\mathrm{g}(x)$ be a function continuous on $[a, b]$ ，differentiable in $(a, b)$ ， with $\mathrm{g}^{\prime}(x)$ decreasing on $(a, b)$ and $\mathrm{g}(a)=\mathrm{g}(b)=0$ ．Using Mean Value Theorem，show that there exists $c \in(a, b)$ such that g is increasing on（ $a, c$ ）and decreasing on（ $c, b$ ）
Hence show that $\mathrm{g}(x) \geq 0$ for all $x \in[a, b]$ ．
（b）Let $f$ be twice differentiable function and $f^{\prime \prime}(x) \geq 0$ or interval $\mathbf{I}$ ．
Suppose $a, b, x \in \mathbf{I}$ with $a<x<b$
By considering the function
$\mathrm{g}(x)=(b-x) \mathrm{f}(a)+(x-a) \mathrm{f}(b)-(b-a) \mathrm{f}(x)$ or otherwise，show that $\mathrm{f}(x) \leq \frac{b-x}{b-a} \mathrm{f}(a)+\frac{x-a}{b-a} \mathrm{f}(b)$
Hence，or otherwise，prove that $\mathrm{f}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) \leq \lambda_{1} \mathrm{f}\left(x_{1}\right)+\lambda_{2} \mathrm{f}\left(x_{2}\right)$ for all $x_{1}, x_{2} \in \mathbf{I}$ ，where $\lambda_{1}, \lambda_{2} \geq 0$ with $\lambda_{1}+\lambda_{2}=1$ ．
（5 marks）
（c）Let $x_{1}$ and $x_{2}$ be positive numbers．
（i）If $\lambda_{1}, \lambda_{2} \geq 0$ with $\lambda_{1}+\lambda_{2}=1$ ，prove that

$$
\lambda_{1} x_{1}+\lambda_{2} x_{2} \geq x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}}
$$

（ii）If $\beta_{1}, \beta_{2}$ are positive numbers，prove that

$$
\left(\frac{\beta_{1} x_{1}+\beta_{2} x_{2}}{\beta_{1}+\beta_{2}}\right)^{\beta_{1}+\beta_{2}} \geq x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} .
$$

（a）（i）Let $I_{n}(\theta)=\int_{0}^{\theta} \tan ^{n} u \mathrm{~d} u$ ，where $n$ is a non－negative integer and $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ ．
Show that $I_{2 n}(\theta)=\frac{\tan ^{2 n-1} \theta}{2 n-1}-I_{2 n-2}(\theta)$ for all $n \geq 1$.
（ii）Using the substitution $t=\tan u$ ，or otherwise，show that
$\int_{0}^{x} \frac{t^{2 n}}{1+t^{2}} \mathrm{~d} t=\frac{x^{2 n-1}}{2 n-1}-\frac{x^{2 n-3}}{2 n-3}+\cdots+(-1)^{n-1} \frac{x}{1}+(-1)^{n} \tan ^{-1} x$
for any positive integer $n$
（5 marks）
（b）（i）Let $x \geq 0$ and $n$ be a positive integer．Prove that $\frac{x^{2 n+1}}{(2 n+1)\left(1+x^{2}\right)} \leq \int_{0}^{x} \frac{t^{2 n}}{1+t^{2}} \mathrm{~d} t \leq \frac{x^{2 n+1}}{2 n+1}$
（ii）Using（a）or otherwise，show that
Using（a）or otherwise，show that
$\frac{1}{2(2 n+1)} \leq\left|\frac{\pi}{4}-\sum_{p=1}^{n} \frac{(-1)^{p-1}}{2 p-1}\right| \leq \frac{1}{2 n+1}$
（iii）Suppose that $\tan \alpha=\frac{1}{5}$ ．Evaluate $\tan 2 \alpha$ and $\tan 4 \alpha$ ，and
show that $\frac{\pi}{4}=4 \tan ^{-1}\left(\frac{1}{5}\right)-\tan ^{-1}\left(\frac{1}{239}\right)$ ．
Hence prove that

$$
\begin{aligned}
& \left|\frac{\pi}{4}-\sum_{p=1}^{n} \frac{(-1)^{p-1}}{2 p-1}\left(\frac{4}{5^{2 p-1}}-\frac{1}{239^{2 p-1}}\right)\right| \\
& \leq \frac{1}{(2 n+1)}\left(\frac{4}{5^{2 n+1}}+\frac{1}{239^{2 n+1}}\right) \\
& \quad(10 \text { marks })
\end{aligned}
$$

## END OF PAPER

