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1. This paper consists of Section A and Section B. sin 4 —sin B =2cos A+B sin A ; L
2. Answer ALL questions in Section A and any FOUR questions in Section B. €08 A +cos B =2 cos A+B cos A-B
2
3. You are provided with one AL(E) answer book and four AL(D) answer books. . A+B . A-B
cos A—cos B=-2sin sin
Section A :  Write your answers in the AL(E) answer book. 2 2
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separately at the end of the examination.
5.

Unless otherwise specified, all working must be clearly shown.

OFHEFHWNR 5 RS A
Hong Kong Examinations Authority
All Rights Reserved 2002

2002-AL-MATH 1—2 -1-
2002-AL-P MATH 1-1

FA . ©PRENHE All Rights Reserved 2002



SECTION A (40 marks)
Answer ALL questions in this section.
Write your answers in the AL(E) answer book.

1. A sequence {a,} isdefinedby a, =1, a, =3 and a,,, =2a,,, +a, for
n=1,2,3,--- . Prove by mathematical induction that
n o _ o
. M for me12,3- .
(5 marks)
2 (a) Express z _éll ‘ =2 in the form of ‘ z—c ‘ =r ,where ¢ and r are
constants.
(b)  Shade the region represented by {z eC: ‘ % < 2} in the Argand
z—
plane.
(5 marks)
3 (a) Write down the matrix 4 representing the rotation in the Cartesian
plane anticlockwise about the origin by 45°.
(b)  Write down the matrix B representing the enlargement in the Cartesian
plane with scale factor V2.
(c) Let X = [XJ and V =BAX ,where 4 and B are the matrices
y
1
defined in (a) and (b). If y! (O J V =—-4 ,express y intermsof x.
(5 marks)
2002-AL-MATH 1-3 -2-
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4. Leti=(1,0,0),j=(0,1,0),k=(0,0,1) and a=i,b=i+j,c=j+k.

(a)  Provethat a is not perpendicular to bxec .
(b)  Find all unit vectors which are perpendicular to both a and bxc .
(¢) If 6€[0,7] istheangle between a and bxc , prove that
Zeo<Z
4 3
(6 marks)
5 (a) Let f(x) and g(x) be polynomials.
Prove that a non-zero polynomial u(x) is a common factor of f(x)
and g(x) ifand only if u(x) isacommon factor of f(x)—g(x) and
gx) .
(b)  Let f(x)=x*-3x>+6x>-5x+3 and
g(x)=x* —4x® +8x* —Tx+4 .
Using (a) or otherwise, find the H.C.F. of f(x) and g(x) .
(7 marks)
6. For k=1,2,3, let z; =cosf, +isin@; be complex numbers, where
6,+6,+0; =27 .
(a)  Evaluate z,z,z; .
1 1 1,2 1
(b)  Provethat cos@, =—(z; +—) and cos20, =—(z;," +—) .
2 Zp 2 2,2
Hence or otherwise, prove that
€08 26, +c08 260, +c0s 205 =4cos @) cos @, cosf; —1 .
(6 marks)
2002-AL-MATH 1-4 -3-
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Let m and k be positive integers and k <m .

m(m—=1)---(m—k+1) < (m+)ym---(m—k+2)
m* (m+1F

Prove that the above inequality does not hold when k=1 .

Prove that for k>1.

SECTION B (60 marks)
Answer any FOUR questions in this section. Each question carries 15 marks.
Use a separate AL(D) answer book for each question.

8. (a) Consider the system of linear equations in x, y, z
(b)  Let m be a positive integer. ax - 2y + z =
Using (a) or otherwise, prove that (1+L)"’ <(1+—1 ym ) *x = y + 2 = b, where a,beR.
m m+l1 y + az = b
(6 marks)
(i) Show that (S) has a unique solution if and only if a? #1.
Solve (S) in this case.
(ii)  For each of the following cases, determine the value(s) of b for
which (S) is consistent, and solve (S) for such value(s) of b .
1 a=1,
?2) a=-1.
(9 marks)
(b)  Consider the system of linear equations in x, y, z
ax — 2y + z = 0
X - y + 2z = -1
(7): , where aeR .
y + a =
Sx = 2y + z = a
Find all the values of a for which (7) is consistent.
Solve (7) for each of these values of a .
(6 marks)
2002-AL-MATH 1—5 —4- Go on to the next page 2002-AL-MATH 1—6 -5-

Fa {REHNA#E All Rights Reserved 2002 A {REE R All Rights Reserved 2002
A A



9. Vectors u, v and w in R® are said to be orthogonal if and only if
uv=v-w=w-u=0.

(a) (i) Show thatif u, v and w are non-zero orthogonal vectors, then
u, v and w are linearly independent.

(ii)  Give a counter example to show that the converse of the
statement in (i) is not true.
(6 marks)

(b)  Let wu=(uy, uy, uy), v=_(v;, vo, v3) and w=(w;, w,, w3) be
three non-zero orthogonal vectors in R* .
(i) By computing the product
Uy Uy Uz (U vy
Vi V2 V3 ||y V2 Wa,
Wp Wy W3 U3 vz W3

show that

U vy w
Uy vy Wwy|#0.

uy vy ws

(i) Let p=(p,, p,, p3) beavectorin R® . Show that pisa
linear combination of u, v and w.
(6 marks)

.0, -1 ) and

1
2

© Letx:(L,O,f%),y:(O,Lo),Z:(

V2

q =(-1,2,0) bevectorsin R>

(i) Show that x, y and z are orthogonal.
(i)  Express q as a linear combinationof x, y and z.

(3 marks)

2002-AL-MATH 1—7 —6— Go on to the next page
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10. (a) Let ay,a,,...,a, bereal numbers and b, ,b,,...,b, benon-zero
real numbers .

. 0 n . )
By considering Zi:l (a,-,\'+b,-)2 , or otherwise, prove Schwarz’s

2
inequality (2”71 a,-b,-) < [Z: a,zj (27—1 bl.z) , and that the

equality holds if and only if % = :—2 == Z”
I 2 n
(6 marks)
®) @) Prove that | &=l | < &i=t’! ,where x,x,,...,x,
n n

are real numbers.

2
(ii)  Prove that (z; A,x,) < (z; A,)(z; },,xf) , Where

X, Xy ,..., X, arereal numbersand 4,,4,,...,4, are

positive numbers.

Find a necessary and sufficient condition for the equality to hold.

(ili)  Using (b)(ii) or otherwise, prove that

2 2 2 2
;
Qo Ya e e Y here
PP o ' 2 o
Y1sYa ..., ¥, arereal numbers, not all zero, and #>2 .
(9 marks)
2002-AL-MATH 1—8 -7-
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11.  (a) Let f(x)=x>-3px+1, where peR . 12.  (a) Let 4 bea 3 x 3 matrix such that
A+ A2+ A4+1=0 ,
(i) Show that the equation f(x)=0 has at least one real root. where 7 isthe 3 x 3 identity matrix.

(i)  Using differentiation or otherwise, show that if p <0 , then the ) Prove that 4 has an inverse, and find 4~ in terms of 4 .

equation f(x)=0 has one and only one real root. 4
(i)  Provethat 4™ =1 .

(iii) If p>0 , find the range of values of p for each of the

-143 SN2, gl g
following cases: (iil) Provethat (47 )" +(47 )" +4  +1=0.

(1)  theequation f(x)=0 has exactly one real root, (iv) Finda 3 x3 invertible matrix B such that
(2)  theequation f(x)=0 has exactly two distinct real roots, B3+B2+B+120 .
3) the equation f(x)=0 has three distinct real roots. (6 marks)
(9 marks)
1 1 1
(b) Let g(x):)(4 +4x+a , where aeR . (b) Let X=/-1 -1 0
-1 0 -1

(i) Prove that the equation g(x) =0 has at most two real roots.

(i) Using (a)(i) or otherwise, find X',
(ii)  Prove that the equation g(x)=0 has two distinct real roots if
andonly if a<3. (i)  Let n be a positive integer. Find X" .
(6 marks) (iii)  Find two 3 x 3 matrices ¥ and Z, other than X, such that
Y 4Y24Y+1=0, Z°+Z°+Z+1=0.
(9 marks)
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13. Let {xn} be a sequence of real numbers such that x; >x, and 3x,,, -x,,,—2x,=0 for n=1,2,3....

2,,,[
3"

(a) (i) Show that for n>1, x,.,-x,=(-1)"" (x;—x5) .

(ii))  Show that the sequence { Xp, X3, X5, ... } is strictly decreasing and that the sequence {xz s X4s Xgsonn } is

strictly increasing.
(5 marks)

(b)) () For any positive integer n, show that x,, < x,,; .

(ii))  Show that the sequences {xl S X3, X5, } and {xz, XgyXgseon } converge to the same limit.
(6 marks)

(c) By considering Zp ](x,Hz —x,) orotherwise, find lim x, intermsof x, and x, .
n=l n—omn
[You may use the fact, without proof, that from (b)(ii) , lim x, exists.]
s

(4 marks)

END OF PAPER
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1. This paper consists of Section A and Section B.
2. Answer ALL questions in Section A and any FOUR questions in Section B.

3. You are provided with one AL(E) answer book and four AL(D) answer books.
Section A :  Write your answers in the AL(E) answer book.
Section B: Use a separate AL(D) answer book for each question and put the
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SECTION A (40 marks)
Answer ALL questions in this section.

‘Write your answers in the AL(E) answer book.
FORMULAS FOR REFERENCE

1. Find the indefinite integral J‘L

A : 4 (1+2) (1+x%)

sin(4+ B) =sin Acos Bt cos Asin B B

cos(A =+ B) =cos Acos BFsin Asin B Hence evaluate the improper integral .[u ﬁ

+Xx +x
+
tan(d+ p) = AnAttan B (6 marks)
1+tan Atan B
. . . A+B A-B
sin 4 +sin B = 2sin cos 2 ) L o ar if xS% ,
. et flx)=
sinA—sinB=2c05A+BsinA;B Msiny if x>Z .
cosA+cosB:2(:osA+BcosA_B or
’ If f is continuous at — , show that 2 = eT/
cosA—cosB:—zsinA;BsinA’B 2’ 2 ‘
Furthermore, if f is differentiable at % , find the values of @ and b .
2sin A cos B =sin(A4 + B) +sin(4— B) (5 marks)
2cos Acos B =cos(A+ B)+cos(4—B)
2sin Asin B = cos(A — B)—cos(4 + B)
3.

Let f:R — R be a continuous function satisfying the following conditions:

@  tim O
x—0 X

(ii) f(x+y)=1f(x)f(y) forall x and y.

(a)  Provethat f'(x) existsand f'(x)=f(x) forevery xeR .
S . f(x) N X
(b) By considering the derivative of — show that f(x)=e" .
e

(5 marks)

2002-AL-P MATH 2-2 —1-
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4. The equation of a straight line ¢ in R? is ( jsinx

6. a Find lim

X = t ﬁ @ x07\ x

y = tx/g , teR.

: = 3-12 LU

t

Let 4 and B betwopointson ¢ with O4=0B=r, where O is the origin. (b) Let f(r)=
(a)  Express the distance between A and B in terms of r. boire=o0.
(b)  If AOAB is an equilateral triangle, find the value of ». ‘f(t)dt -Xx

(5 marks)

3

. . 0
Find lim
x—0 X

(6 marks)
5. (a)  Ifthe function g:R — R is both even and odd, show that g(x)=0
forall xeR .
7. Let 7" be the curve with polar equation r=1-cos46 , 0<0<2x .
(b)  For any function f:R — R , define

1 1 (a) Find the polar coordinates of all the points on / that are farthest from
F(x)==[f(x)+f(-x)] and G(x)=—[f(x)-f(-x)] . the pole O .
2 2
ketch th r.
(i) Show that F is an even function and G is an odd function. (©)  Sketch the curve

Find th 1 r.
(i) If £f(x)=M(x)+N(x) forall xeR , where M is even and (¢) Find the area enclosed by

N is odd, show that M(x) =F(x) and N(x)=G(x) forall
xeR .

(7 marks)

(6 marks)
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SECTION B (60 marks) 9 Find J'),X in x dx
Answer any FOUR questions in this section. Each question carries 15 marks. ’ @ md Je - smxex.
Use a separate AL(D) answer book for each question. (3 marks)

(b) Let f:R —[0,0) be aperiodic function with period 7.

8. Let f(x):)cz—i (x#1) .
x-1 . bk (b«
(i)  Prove that J' e Tde=e J'e *f(x)dx for any
a+ a
(a) Find f'(x) and f"(x) . positive integer & .
(2 marks)

nT
(b) Determine the range of values of x for each of the following cases: (i) Let 1, = _[0 e f(x)dy

@) f'(x)>0 , l—eT
(ii) f'(x)<0 , Prove that 7, = - I, for any positive integer # .
(i) (x>0, -
@iv) f"(x)<0. (iii)  If ¢ is a positive number and » is a positive integer such that
(3 marks) nT <0< (n+1)T , prove that
l—eT ¢ | ()T
(c)  Find the relative extreme point(s) and point(s) of inflexion of f(x) . -1 < J. e f(x)dy < — .
(2 marks) I-e 0 -
X Hence find the improper integral j Je"‘f(x)dx in terms of /;
(d)  Find the asymptote(s) of the graph of f(x) . 0
(1 mark) and T.
(9 marks)
(e) Sketch the graph of f(x) .
(2 marks) (¢c)  Using the results of (a) and (b)(iii), evaluate J' e[ sinx|dr .
0
(H  Let g)=Ff(x)h (x[=1) . (3 marks)
(i) Is g(x) differentiable at x=0? Why?
(i)  Sketch the graph of g(x).
(5 marks)
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10.  Let f and g be continuous functions defined on [0, 1] such that f is 11.  Consider the parabolas C, : y? =4(x+1) and C,: y2=dx.

decreasing and 0<g(x)<1 forall x<[0,1]. Let P(p>—1,2p) beapointon C, . The two tangents drawn from P to C,

For x€[0,1] , define G(x)= ng(t)dt and touch C, at the points S(sz, 2s) and T(tz, 2t) .
0
é(x)= IGW f(r)dr — rf(t)g(;)dt . (a)  Find the equations of PS and PT and hence show that s+¢=2p ,
0 0 )
st=p°—1.

(a) (i) Prove that G(x) < x. Hence prove that ¢'(x)>0 for all (4 marks)

xe(0,1) . () 0(q*,2q) isapointonthearc ST of C, . Prove that the area of

ASQT is a maximum if and only if ¢=p .
(i)  Evaluate ¢(0) and hence prove that

(6 marks)
1 G(1)

J' f(t)g(t)dtéj )
0 0

(c) Let O be the point in (b) where the area of ASQT is a maximum. If

(7 marks) the straight line PQ cuts the chord ST at M, find the equation of the
locus of M as P moves along C; .
x
() Let Hx)= J‘O[l—g(t)]dt forall xe[0,1] . (5 marks)
@)  Provethat G(I)+H(I)=1 .
1 1
(i)  Using (a)(ii), prove that J' f(r)dr < _[ f()g(r)dr .
1-G(1) 0
(5 marks)

(c) Using the results of (a)(ii) and (b)(ii), prove that

1
1 1 L
J.Lf(t)dt < J‘Of(t)-t”dt < IO"*I f(r)dr , where n is a positive integer.

n+l
1
Hence show that lim I f(t)-t"dt=0.
no 40

(3 marks)
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12. (a)  Let g(x) be a function continuous on [a, b], differentiable in (a, b),
with g'(x) decreasing on (a, b) and g (a) =g (b)=0. Using Mean
Value Theorem, show that there exists ¢ € (a, b) such that g is
increasing on (g, ¢) and decreasing on (c, b) .
Hence show that g(x) >0 forall x €[a, b].
(5 marks)

(b)  Let f be a twice differentiable function and f"'(x)>0 on an open
interval I.
Suppose a, b, x € I with a<x<b .
By considering the function
g(x)=(b—x)f(a)+(x—a)f(b)—(b—a)f(x) or otherwise, show that

b—x x—a
f(x)SEf(aﬁ—Ef(b) .

Hence, or otherwise, prove that f(4,x; + 4,x,) < A4, f(x))+ A,f(x,)
forall x,x, el , where 4,4, 20 with 4, +4,=1.

(5 marks)
(¢) Let x; and x, be positive numbers.
(i) If 4,4, >0 with A4, +A4, =1, prove that
Xy +A,x, 2 xf“'x;12
(ii) If p,, B, are positive numbers, prove that
Pi+pe
['lel"'ﬂz’%] ' lenxfz'
B+ B,
(5 marks)

2002-AL-P MATH2 --10 —9—
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0
13. (a) (1) Let 1,(0) = I tan” u du , where n is a non-negative integer
0

and -Z<0<Z .
2

2n-1

Show that 1, (0) :%4%4(9) forall n>1.
=

(i)  Using the substitution 7=tanu , or otherwise, show that

2n x2r171 2n-3

x f X n-1 X n -1
dr = et (-] —+(-D"tan" x
I01+,2 2n-1 2n-3 D 1 b

for any positive integer » .
(5 marks)

®) @) Let x>0 and » be a positive integer. Prove that

X2n+l 2n ~X2n+1

J.x
— < [ < .
@n+)(1+x%)  Jo14s2 2n+1

(i)  Using (a) or otherwise, show that

_1 P!
1 < E_zn (=1) 1
4 r=l 2p-1

T 2n+l

2(2n+1)

(iii)  Suppose that tana =— . Evaluate tan2¢ and tan4e , and

!
5
show that ﬁ—4tan (L —tan™!
5 239

Hence prove that
z_ N (D4
4 p=l 2p—1 | 521 9392r-1

< 1 4 + 1
7(2n+1) 521+ 9392n+l .

(10 marks)
END OF PAPER
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