FORMULAS FOR REFERENCE

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \pm \tan A \tan B}$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos \frac{A+B}{2}\sin \frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

SECTION A (40 marks)

Answer ALL questions in this section.

Write your answers in the AL(C)1 answer book.

1. Consider the system of linear equations

(*):
$$\begin{cases} 2x + y + 2z = 0 \\ x + (k+1)z = 0 \\ kx - y + 4z = 0 \end{cases}$$

Suppose (*) has infinitely many solutions.

- (a) Find k
- (b) Solve (*).

(6 marks)

- 2. If $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ for any $(x, y) \in \mathbb{R}^2$, then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is said to be the matrix representation of the transformation which transforms (x, y) to (x', y'). Find the matrix representation of
 - (a) the transformation which transforms any point (x, y) to (-x, y),
 - (b) the transformation which transforms any point (x, y) to (y, x).

 (4 marks)

- 3. Let m, n be two vectors, where $|\mathbf{m}| = 2$, $|\mathbf{n}| = 1$ and the angle between them is $\frac{2\pi}{3}$. If $\mathbf{p} = 3\mathbf{m} + 4\mathbf{n}$ and $\mathbf{q} = 2\mathbf{m} \mathbf{n}$, find
 - (a) $\mathbf{m} \cdot \mathbf{n}$,
 - (b) $|\mathbf{p}|$ and $|\mathbf{q}|$,
 - (c) the area of the parallelogram with $\, p \,$ and $\, q \,$ as two adjacent sides. (7 marks)
- 4. Let z be a complex number satisfying 2|z-2i| = |z+i|.
 - (a) Show that the locus of z on an Argand diagram is a circle. Find its centre and radius.
 - (b) Let $S = \{z \in \mathbb{C} : 2|z-2i| \le |z+i| \}$. Draw and shade the region which represents S on an Argand diagram.

Hence find $z_0 \in S$ such that $|z_0| \le |z|$ for all $z \in S$.

(6 marks)

- 5. Let α , β be the roots of $x^2 14x + 36 = 0$. Show that $\alpha^n + \beta^n$ is divisible by 2^n for n = 1, 2, 3, ... (5 marks)
- 6. Suppose 0 .
 - (a) Let $f(x) = x^p px + p 1$ for x > 0. Find the absolute maximum value of f(x).
 - (b) Show that for all positive numbers a and b, $a^p b^{1-p} \le pa + (1-p)b$. (6 marks)

- 7. It is given that $f(x) = 2x^4 + x^3 + 10x^2 + 2x + 15$ and $g(x) = x^3 + 2x 3$. Let d(x) be the H.C.F. of f(x) and g(x).
 - (a) Using Euclidean Algorithm, or otherwise, find d(x).
 - (b) Find polynomials u(x) and v(x) of degree ≤ 1 such that u(x)f(x) + v(x)g(x) = d(x) for all x.

(6 marks)

SECTION B (60 marks)

Answer any FOUR questions in this section. Each question carries 15 marks. Write your answers in the AL(C)2 answer book.

Consider the system of linear equations 8.

(E):
$$\begin{cases} ax + y + bz = 1 \\ x + ay + bz = 1 \\ x + y + abz = b \end{cases}$$

Show that (E) has a unique solution if and only if $a \neq -2$, $a \neq 1$ and (a) $b \neq 0$. Solve (E) in this case.

(7 marks)

- For each of the following cases, determine the value(s) of b for which (b) (E) is consistent. Solve (E) in each case.
 - a = -2.
 - (ii) a=1.

(6 marks)

Determine whether (E) is consistent or not for b = 0. (c) (2 marks)

- 5 -

- 9. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where $a, b, c, d \in \mathbb{R}$, $a \neq 0$ and $\det A = 0$.
 - (a) Show that $A = \begin{pmatrix} a & b \\ ka & kb \end{pmatrix}$ for some $k \in \mathbb{R}$.

(3 marks)

Find P in the form of $\begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix}$ such that $PA = \begin{pmatrix} \alpha & \beta \\ 0 & 0 \end{pmatrix}$ for some $\alpha, \beta \in \mathbf{R}$. If $a+d\neq 0$, find Q in the form of $\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$ such that $PAP^{-1}Q = \begin{pmatrix} \gamma & 0 \\ 0 & 0 \end{pmatrix}$ for some $\gamma \in \mathbf{R}$.

(5 marks)

Find S such that $S \begin{pmatrix} 3 & 7 \\ 6 & 14 \end{pmatrix} S^{-1} = \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix}$ for some $\lambda \in \mathbf{R}$. Hence, or otherwise, evaluate $\begin{pmatrix} 3 & 7 \\ 6 & 14 \end{pmatrix}^n$ where *n* is a positive integer. (7 marks)

-6-

- 10. Let a = -i + 3j + 2k, b = 4i + j k and c = j + 3k.
 - (a) Show that a, b and c are linearly independent.

(3 marks)

- (b) Figure 1 shows the parallelepiped $\overrightarrow{AOBDECFG}$ formed by the vectors \mathbf{a} , \mathbf{b} and \mathbf{c} , where $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$. Find
 - (i) \overrightarrow{OG} ,
 - (ii) the Cartesian equation of the plane containing AOBD,
 - (iii) the Cartesian equation of the plane containing AEGD,
 - (iv) the acute angle between the planes mentioned in (ii) and (iii), and
 - (v) the volume of the parallelepiped AOBDECFG.

(12 marks)

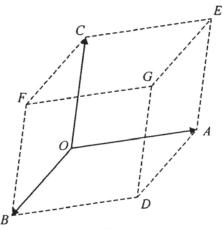


Figure 1

Consider the equation

$$x^3 - 3px + 2q = 0$$
 (*),

where p, q are real numbers.

- (a) (i) If (*) has a repeated root, show that $p^3 = q^2$.
 - (ii) If $q = \sqrt{p^3}$, show that \sqrt{p} is a repeated root of (*).
 - (iii) If $q = -\sqrt{p^3}$, show that (*) has a repeated root. (8 marks)
- - (i) Transform (**) into the form $y^3 3py + 2q = 0$ by using the substitution x = y h for some constant h.
 - (ii) Find c > 0 such that (**) has a repeated root. Solve (**) for this value of c. (7 marks)

- 2. (a) Let α , β and γ be positive numbers. Suppose $(x-\alpha)(x-\beta) = x^2 2px + q$ and $(x-\alpha)(x-\beta)(x-\gamma) = x^3 3bx^2 + 3cx d$ for all x.
 - (i) Show that $p^2 \ge q$.
 - (ii) By expressing b, c and d in terms of γ , p and q, or otherwise, show that $b^2 \ge c > 0$ and $c^2 \ge bd$.

 Hence, or otherwise, show that $b \ge \sqrt{c} \ge \sqrt[3]{d}$.

 (10 marks)
 - (b) Let A, B, C be the angles of a triangle. Show that $\tan\frac{A}{2}\tan\frac{B}{2}+\tan\frac{B}{2}\tan\frac{C}{2}+\tan\frac{C}{2}\tan\frac{A}{2}=1.$ Using (a), or otherwise, show that $\tan\frac{A}{2}+\tan\frac{B}{2}+\tan\frac{C}{2}\geq\sqrt{3} \quad \text{and} \quad \tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}\leq\frac{\sqrt{3}}{9}.$ (5 marks)

- 13. Let r and θ be real numbers.
 - (a) By considering $z = r(\cos \theta + i \sin \theta)$, or otherwise, simplify $\frac{r + \cos \theta + i \sin \theta}{1 + r \cos \theta ir \sin \theta}.$

(4 marks)

- (b) For any positive integer n, show that $\left(\frac{r+\sin\theta+i\cos\theta}{1+r\sin\theta-ir\cos\theta}\right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right)+i\sin\left(\frac{n\pi}{2}-n\theta\right).$ (3 marks)
- Find r and θ , with $r \ge 0$, such that $\left(\frac{r+\sin\theta+i\cos\theta}{1+r\sin\theta-ir\cos\theta}\right)^3 = \frac{\sqrt{3}+i}{2}$. For such r and θ , sketch the points representing $z = r(\cos\theta+i\sin\theta)$ on an Argand diagram. (6 marks)
- (d) Determine with reasons whether there exist r and θ , with $r \ge 0$, such that $\left(\frac{r+\sin\theta+i\cos\theta}{1+r\sin\theta-ir\cos\theta}\right)^3=\sqrt{3}+i$. (2 marks)

END OF PAPER

FORMULAS FOR REFERENCE

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \pm \tan A \tan B}$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

SECTION A (40 marks)

Answer ALL questions in this section.

Write your answers in the AL(C)1 answer book.

1. Evaluate

(a)
$$\lim_{x\to 0}\frac{e^x-1-\sin x}{x^2},$$

(b)
$$\lim_{x\to 0} \left(\frac{3e^x+2}{5}\right)^{\frac{1}{x}}.$$

(6 marks)

2. Let $f: \mathbf{R} \to \mathbf{R}$ be a continuous periodic function with period T.

(a) Evaluate
$$\frac{d}{dx} \left(\int_0^{x+T} f(t)dt - \int_0^x f(t)dt \right)$$
.

- (b) Using (a), or otherwise, show that $\int_{x}^{x+T} f(t)dt = \int_{0}^{T} f(t)dt$ for all x. (4 marks)
- 3. Evaluate $\int \ln(1+x) dx$.

Hence, or otherwise, find $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n} \ln(1+\frac{k}{n})$.

(5 marks)

4. Consider the line

$$L: \ \frac{x-1}{2} = \frac{y-2}{-1} = \frac{z}{2}$$

and the plane

$$\pi: x+y+z=0.$$

- (a) Find the coordinates of the point where L intersects π .
- (b) Find the angle between L and π .

(6 marks)

5.

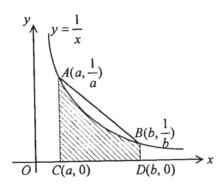


Figure 1

(a) In Figure 1, using the fact that the shaded area is less than the area of the trapezium ACDB, or otherwise, show that

$$\ln b - \ln a < \frac{1}{2}(b-a)(\frac{1}{a} + \frac{1}{b})$$
.

(b) Using (a), or otherwise, show that $\ln n < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \frac{n+1}{2n}$ for any positive integer n.

State with reasons whether $\lim_{n\to\infty} (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n})$ exists.

(6 marks)

6. Let
$$a_1 = 2$$
, $b_1 = \frac{3}{2}$ and $a_n = \frac{2n}{2n-1}a_{n-1}$, $b_n = \frac{2n+1}{2n}b_{n-1}$ for $n \ge 2$.

- (a) Prove that $a_n > b_n$ and $a_n b_n = 2n + 1$ for $n \ge 1$.
- (b) Using (a), or otherwise, show that $a_n^2 > 2n+1$ for $n \ge 1$.

Hence find $\lim_{n\to\infty} \frac{1}{a_n}$.

(7 marks)

7.

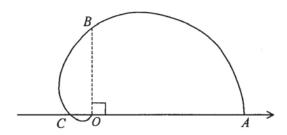


Figure 2

Figure 2 shows the graph of $r = \cos^3 \frac{\theta}{3}$ $(0 \le \theta \le \frac{3\pi}{2})$.

- (a) Evaluate $\int \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta$.
- (b) Let the lengths of \widehat{AB} , \widehat{BC} and \widehat{CO} be a, b and c respectively. Show that a+c=2b.

(6 marks)

SECTION B (60 marks)

Answer any FOUR questions in this section. Each question carries 15 marks.

Write your answers in the AL(C)2 answer book.

- Let $f(x) = x^{\frac{1}{3}}(x+1)^{\frac{2}{3}}$.
 - Find f'(x) for $x \neq -1, 0$. (i) (a)
 - Show that $f''(x) = \frac{-2}{9x^{\frac{5}{3}}(x+1)^{\frac{4}{3}}}$ for $x \neq -1, 0$.

(2 marks)

- Determine with reasons whether f'(-1) and f'(0) exist or not. (b) (2 marks)
- Determine the values of x for each of the following cases: (c)
 - f'(x) > 0,

(ii) f'(x) < 0,

f''(x) > 0,

(iv) f''(x) < 0.

(3 marks)

- Find all relative extrema and points of inflexion of f(x). (d) (3 marks)
- Find all asymptotes of the graph of f(x). (e)

(2 marks)

Sketch the graph of f(x). (f)

(3 marks)

- Let $I_m = \int_0^{\frac{\pi}{2}} \cos^m t \, dt$ where m = 0, 1, 2, ...
 - Evaluate I_0 and I_1 . (a)
 - (ii) Show that $I_m = \frac{m-1}{m} I_{m-2}$ for $m \ge 2$.

Hence, or otherwise, evaluate I_{2n} and I_{2n+1} for $n \ge 1$. (7 marks)

(b) Show that $I_{2n-1} \ge I_{2n} \ge I_{2n+1}$ for $n \ge 1$. (2 marks)

- (c) Let $A_n = \frac{1}{2n+1} \left[\frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdots (2n-1)} \right]^2$ where $n = 0, 1, 2, \dots$
 - Using (a) and (b), show that $\frac{2n+1}{2n}A_n \ge \frac{\pi}{2} \ge A_n$.
 - Show that $\{A_n\}$ is monotonic increasing.
 - (iii) Evaluate $\lim_{n\to\infty} \frac{1}{\sqrt{2n+1}} \left[\frac{2\cdot 4\cdot 6\cdots (2n)}{1\cdot 3\cdot 5\cdots (2n-1)} \right]$. (6 marks)

- Let $f: \mathbf{R} \to \mathbf{R}$ be a continuous function.
 - Show that (i) $\int_0^a f(t+b) dt = \int_0^{a+b} f(t) dt - \int_0^b f(t) dt \quad \text{for all } a, b \in \mathbb{R}.$
 - If f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$, show that $\int_0^x f(t+1) dt = f(1)x + \int_0^x f(t) dt$ for all $x \in \mathbb{R}$. Using (i), or otherwise, show that f(x) = f(1)x for all $x \in \mathbb{R}$. (8 marks)
 - Suppose g is a non-constant continuous function defined for all positive real numbers and g(xy) = g(x) + g(y) for all x, y > 0. By considering the function $f(t) = g(e^t)$ for $t \in \mathbb{R}$, show that $g(x) = \log_a x$ for some a > 0. (7 marks)

- Let f be a non-negative continuous function on [a, b]. Define 11. $F(x) = \int_{a}^{x} f(t) dt$ for $x \in [a, b]$. Show that F is an increasing function on [a, b]. Hence deduce that if $\int_a^b f(t) dt = 0$, then f(x) = 0 for all $x \in [a, b]$. (5 marks)
 - Let g be a continuous function on [a, b]. If $\int_{a}^{b} g(x) u(x) dx = 0$ for any continuous function u on [a, b], show that g(x) = 0 for all $x \in [a, b]$. (3 marks)
 - Let h be a continuous function on [a, b]. Define $A = \frac{1}{h-a} \int_a^b \mathbf{h}(t) \, \mathrm{d}t .$
 - If v(x) = h(x) A for all $x \in [a, b]$, show that $\int_a^b \mathbf{v}(x) \mathrm{d}x = 0 .$
 - If $\int_{a}^{b} h(x) w(x) dx = 0$ for any continuous function w on [a, b] satisfying $\int_a^b w(x)dx = 0$, show that h(x) = A for all $x \in [a, b]$. (7 marks)

98-AL-PURE MATHS II-8

Figure 3 shows a circle with radius 1 and centre C touching a line L with slope m > 0 at Q(a,b). $R(x_0,y_0)$ is another point on the circle and $\angle QCR = \theta$.

(a) Show that
$$\begin{cases} x_0 = a - \frac{2}{\sqrt{1 + m^2}} \sin \frac{\theta}{2} (\cos \frac{\theta}{2} - m \sin \frac{\theta}{2}) \\ y_0 = b - \frac{2}{\sqrt{1 + m^2}} \sin \frac{\theta}{2} (m \cos \frac{\theta}{2} + \sin \frac{\theta}{2}) \end{cases}$$

(7 marks)

- (b) Consider the curve $\Gamma: y = \frac{2}{3}(x-1)^{\frac{3}{2}}$ where $x \ge 1$.
 - (i) Find the slope of tangent of Γ at x = a.
 - (ii) Find the length of arc of Γ from x = 1 to x = a.
 - (iii) Figure 4 shows a circle with radius 1 rolling tangentially below the curve Γ without slipping. Let P be a point fixed on the circle with initial position at (1,0). Find the x-coordinate of P when the circle touches Γ at x=4.

(8 marks)

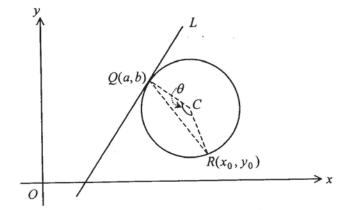


Figure 3

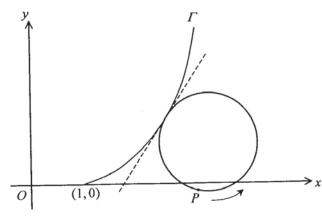


Figure 4

- 13. Let $I = \left[0, \frac{\pi}{3}\right]$ and $g(x) = \cos x \frac{1}{3}\cos^3 x$, where $x \in I$. Let $x_0 \in I$ and define $x_n = g(x_{n-1})$ for n = 1, 2, 3, ...
 - (a) Show that the equation x = g(x) has exactly one root in I. (3 marks)
 - (b) Show that $x_n \in I$ for all n. (3 marks)
 - (c) Show that $|g'(x)| \le \frac{3}{4}$ for all $x \in I$. (2 marks)
 - (d) Let α be the root of x = g(x) mentioned in (a).
 - (i) Show that $|x_n \alpha| \le \frac{3}{4} |x_{n-1} \alpha|$ for n = 1, 2, 3, ...
 - (ii) Show that $\{x_n\}$ converges and $\lim_{n\to\infty} x_n = \alpha$.
 - (iii) If $x_0 = \frac{\pi}{6}$, find a positive integer *n* such that $\left| x_n \alpha \right| < \frac{1}{100}$.

(7 marks)

END OF PAPER