2008 AS Mathematics & Statistics

評卷參考*

Marking Scheme * 此部分只設英文版本。

AS Mathematics and Statistics

General Instructions To Markers

- It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept / technique had been used.
- 3. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 4. Unless the form of the answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they are correct.
- 5. Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.
- 6. In the marking scheme, marks are classified into the following three categories:

'M' marks - awarded for applying correct methods
'A' marks - awarded for the accuracy of the answers

Marks without 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. (I.e. Markers should follow through candidates' work in awarding 'M' marks.) However, 'A' marks for the corresponding answers should <u>NOT</u> be awarded, unless otherwise specified.

- 7. In the marking scheme, steps which can be skipped are enclosed by dotted rectangles, whereas alternative answers are enclosed by solid rectangles.
- 8. Marks may be deducted for poor presentation (pp). The symbol (pp-1) should be used to denote 1 mark deducted for pp.
 - (a) At most deduct 1 mark for pp in each section.
 - (b) In any case, do not deduct any marks for pp in those steps where candidates could not score any marks.
- 9. Marks may be deducted for numerical answers with inappropriate degree of accuracy (a). The symbol (a-1) should be used to denote 1 mark deducted for a.
 - (a) At most deduct 1 mark for a in each section.
 - (b) In any case, do not deduct any marks for a in those steps where candidates could not score any marks.
- 10. Marks entered in the Page Total Box should be the NET total scored on that page.

<u></u>	Solution	Marks	Remarks
1 ()	(i) $\frac{1}{\sqrt{1+\alpha x}} = 1 + \left(\frac{-1}{2}\right)(\alpha x) + \frac{\left(\frac{-1}{2}\right)\left(\frac{-1}{2}-1\right)}{2!}(\alpha x)^2 + \cdots$	13.5	For binomial expansion $\frac{-1}{2}$
1. (a)	(1) $\frac{1}{\sqrt{1+ax}} = 1 + \left(\frac{1}{2}\right)(ax) + \frac{1}{2!} + \cdots$	1M	on $(1+ax)^{\frac{-1}{2}}$
	$=1-\frac{a}{2}x+\frac{3a^2}{8}x^2+\cdots$	1A	For any two terms correct. pp-1 for omitting ''
	$\int \frac{-a}{a} = \frac{3}{a}$		pp 1 for omitting
	$\frac{-a}{2} = \frac{3}{2}$ $\frac{3a^2}{8} = b$	1M :	For both
	(8		*
	$\therefore a = -3 \text{ and } b = \frac{27}{8}$	1A	For both correct
	(ii) The expansion is valid for $ x < \frac{1}{3}$	1A '	
(b)	$\therefore \frac{1}{\sqrt{1-3\left(\frac{1}{30}\right)}} = 1 + \frac{3}{2}\left(\frac{1}{30}\right) + \frac{27}{8}\left(\frac{1}{30}\right)^2 + \cdots$	* Holory	
	$\sqrt{\frac{10}{9}} \approx \frac{843}{800}$	1A	For RHS, accept 1.05375
	$\sqrt{10} \approx \frac{2529}{800}$	1A	Accept 3.16125 and 3.1613
	800	(7)	
. (a)	$y^3 - uy = 1$		
	$3y^2 \frac{\mathrm{d}y}{\mathrm{d}u} - \left(u \frac{\mathrm{d}y}{\mathrm{d}u} + y\right) = 0$	1M	
	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{y}{3y^2 - u}$	1A	
	Alternative Solution		
	$u = y^2 - \frac{1}{y}$		
	$\frac{\mathrm{d}u}{\mathrm{d}y} = 2y + \frac{1}{v^2}$	IM	
	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{y^2}{2y^3 + 1}$	1A	
(b)	$u = 2^{x^2}$ $\ln u = x^2 \ln 2$	134	
	$\frac{1}{u}\frac{du}{dx} = 2x \ln 2$	1M 1M	
	$\frac{du}{dx} = 2^{x^2} \cdot 2x \ln 2$	ļ	
	$\frac{1}{dx} = 2^{x} + 2x \ln 2$	1A	
	Alternative Solution		
	$u = 2^{x^2} = e^{x^2 \ln 2}$ $du = e^{x^2 \ln 2}$	1 M	
	$\frac{\mathrm{d}u}{\mathrm{d}x} = e^{x^2 \ln 2} \cdot 2x \ln 2$	1M	
	$=2^{x^2}\cdot 2x\ln 2$	1A	[

Solution	Marks	Remarks
(c) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$		
$=\frac{y}{3y^2-u}\cdot 2^{x^2}\cdot 2x\ln 2$	1 M	
•		, r ² +1
$=\frac{2^{x^2} \cdot 2xy \ln 2}{3y^2 - 2^{x^2}}$	1A	OR $\frac{2^{x^2+1} xy \ln 2}{3y^2-2^{x^2}}$
·	(7)	3y -2
dv (1 1)		
(a) $\frac{\mathrm{d}x}{\mathrm{d}t} = 5.3 \left(\frac{1}{t+2} - \frac{1}{t+5} \right) + 1.2e^{-0.1t}$		
$x = \int 5.3 \left(\frac{1}{t+2} - \frac{1}{t+5} \right) + 1.2e^{-0.1t} dt$	1 M	,
$= 5.3[\ln(t+2) - \ln(t+5)] - 12e^{-0.1t} + C \text{(since } t \ge 0\text{)}$	1A	OR $5.3[\ln t+2 - \ln t+5]$
When $t = 0$, $x = 0$. $\therefore 0 = 5.3(\ln 2 - \ln 5) - 12 + C$	42.5	$-12e^{-0.1t}+C$
$C = 5.3(\ln 5 - \ln 2) + 12$	1M	
≈ 16.8563		
i.e. $x = 5.3 [\ln(t+2) - \ln(t+5)] - 12e^{-0.1t} + 16.8563$	lA	OR $x = \dots + 5.3 \ln 2.5 + 12$
(b) $\lim_{t\to\infty} \left\{ 5.3 \left[\ln(t+2) - \ln(t+5) \right] - 12e^{-0.1t} + 16.8563 \right\}$	1M	`
$=5.3 \lim_{t \to \infty} \ln \frac{t+2}{t+5} - 12 \lim_{t \to \infty} e^{-0.1t} + 16.8563$		
= 16.8563	1 A	
i.e. the concentration of the drug after a long time = 16.8563 mg/L		
	(6)	
(a) $P(A \cap B) = P(A \mid B) \cdot P(B)$		
$=\frac{k}{6}$	1A	
(b) $: P(A \cup B) = P(A) + P(B) - P(A \cap B)$		
$\therefore \frac{9}{20} = \frac{1}{5} + k - \frac{k}{6}$	l IM	
20 3 0		
	1A	
i.e. $k = \frac{3}{10}$		
(c) $P(A' \cap B) = P(B) - P(A \cap B)$		
10	1M	
(c) $P(A' \cap B) = P(B) - P(A \cap B)$ = $\left(\frac{3}{10}\right) - \frac{1}{6}\left(\frac{3}{10}\right)$ Alternative Solution		
(c) $P(A' \cap B) = P(B) - P(A \cap B)$ $= \left(\frac{3}{10}\right) - \frac{1}{6}\left(\frac{3}{10}\right)$ Alternative Solution $P(A' \cap B) = P(A \cup B) - P(A)$		
(c) $P(A' \cap B) = P(B) - P(A \cap B)$ = $\left(\frac{3}{10}\right) - \frac{1}{6}\left(\frac{3}{10}\right)$ Alternative Solution		

	Solution	Marks	Remarks
(d)			
	$=1-\frac{9}{20}$		
	20		
	Alternative Solution 1		
	$P(A' \cap B') = P(A') - P(A' \cap B)$		
	$=\left(1-\frac{1}{5}\right)-\left(\frac{1}{4}\right)$		
	(5) (4)		
	Alternative Solution 2	1	
	$P(A' \cap B') = P(A') + P(B') - P(A' \cup B')$		
	$= P(A') + P(B') - P((A \cap B)')$		
	$-(1 \ 1) \cdot (1 \ 3) \cdot (1 \ 3)$		
	$= \left(1 - \frac{1}{5}\right) + \left(1 - \frac{3}{10}\right) - \left(1 - \frac{1}{6} \cdot \frac{3}{10}\right)$		
	$=\frac{11}{20}$		
		13.6	F P(4/- P() + 0
	$\neq 0$ Hence A' and B' are not mutually exclusive.	1M	For $P(A' \cap B') \neq 0$
	Hence A and B are not mutually exclusive.	1	Follow through
	Alternative Solution		
	$P(A') + P(B') = \left(1 - \frac{1}{5}\right) + \left(1 - \frac{3}{10}\right)$		
	5) (10)		
	$=\frac{3}{7}$		
	$ \begin{array}{ccc} 2 \\ \neq P(A' \cup B') & \text{since } P(A' \cup B') \leq 1 \end{array} $	1M	For $P(A') + P(B') \neq P(A' \cup B')$
	Hence A' and B' are not mutually exclusive.	1	Follow through
	Troite II and B are not mutually exclusive.		1 onow through
		(7)	
5. (a)	Let X be the amount of money spent by a randomly selected customer. P(X > 30000) = 0.242		
	$P\left(Z > \frac{30000 - \mu}{6000}\right) = 0.242$	1M	For standardization
	6000	1111	1 of Sundardization
	$P \left(0 < Z \le \frac{30000 - \mu}{10000} \right) = 0.258$		
	$P\left(0 < Z \le \frac{30000 - \mu}{6000}\right) = 0.258$		
		1A	
	$\therefore \frac{30000 - \mu}{6000} = 0.7$		
		1A 1A	
(b)	$\therefore \frac{30000 - \mu}{6000} = 0.7$ i.e. $\mu = 25800$ The required probability		
(b)	$\therefore \frac{30000 - \mu}{6000} = 0.7$ i.e. $\mu = 25800$ The required probability		For P(16500 < X < 30000)
(b)	$\therefore \frac{30000 - \mu}{6000} = 0.7$ i.e. $\mu = 25800$ The required probability $= \frac{P(16500 < X < 30000)}{P(X < 30000)}$	1 A	For P(16500 < X < 30000)
(b)	$\therefore \frac{30000 - \mu}{6000} = 0.7$ i.e. $\mu = 25800$ The required probability $= \frac{P(16500 < X < 30000)}{P(X < 30000)}$	1 A	For P(16500 < X < 30000)
(b)	$\therefore \frac{30000 - \mu}{6000} = 0.7$ i.e. $\mu = 25800$ The required probability $= \frac{P(16500 < X < 30000)}{P(X < 30000)}$	1 A	For P(16500 < X < 30000)
(b)	$\therefore \frac{30000 - \mu}{6000} = 0.7$ i.e. $\mu = 25800$ The required probability $= \frac{P(16500 < X < 30000)}{P(X < 30000)}$ $= \frac{P\left(\frac{16500 - 25800}{6000} < Z < \frac{30000 - 25800}{6000}\right)}{1 - P(X \ge 30000)}$	1 A	For P(16500 < X < 30000)
(b)	$\therefore \frac{30000 - \mu}{6000} = 0.7$ i.e. $\mu = 25800$ The required probability $= \frac{P(16500 < X < 30000)}{P(X < 30000)}$	1 A	For $P(16500 < X < 30000)$
(b)	$\therefore \frac{30000 - \mu}{6000} = 0.7$ i.e. $\mu = 25800$ The required probability $= \frac{P(16500 < X < 30000)}{P(X < 30000)}$ $= \frac{P(\frac{16500 - 25800}{6000} < Z < \frac{30000 - 25800}{6000})}{1 - P(X \ge 30000)}$ $= \frac{P(-1.55 < Z < 0.7)}{1 - P(X \ge 30000)}$	1A 1A	
(b)	$\therefore \frac{30000 - \mu}{6000} = 0.7$ i.e. $\mu = 25800$ The required probability $= \frac{P(16500 < X < 30000)}{P(X < 30000)}$ $= \frac{P\left(\frac{16500 - 25800}{6000} < Z < \frac{30000 - 25800}{6000}\right)}{1 - P(X \ge 30000)}$ $= \frac{P(-1.55 < Z < 0.7)}{1 - 0.242}$ $= \frac{0.4394 + 0.258}{0.758}$	1A 1A	
(b)	$\therefore \frac{30000 - \mu}{6000} = 0.7$ i.e. $\mu = 25800$ The required probability $= \frac{P(16500 < X < 30000)}{P(X < 30000)}$ $= \frac{P\left(\frac{16500 - 25800}{6000} < Z < \frac{30000 - 25800}{6000}\right)}{1 - P(X \ge 30000)}$ $= \frac{P(-1.55 < Z < 0.7)}{1 - 0.242}$ $= \frac{0.4394 + 0.258}{0.4394 + 0.258}$	1A 1A	

_	7.	Solution	Marks	Remarks
5.	(a)	Since the mean of the 17 student marks is 74, $k = 74$	1A	
			174	
	(b)	The required probability		
		$=\frac{C_1^3 \cdot C_2^{15}}{C_3^{18}}$	1M	For denominator
			11/1	Tor denominator
		$=\frac{105}{272}$	1A	OR 0.3860
		272		011 012000
	(c)	(i) The standard deviation of the 18 student marks is 9.32737905.	1M	Accept 1 d.p. or above
		The corresponding interval is $(74-2\times9.32737905, 74+2\times9.32737905)$		
		≈ (55.34524189, 92.65475811)		
		Thus, 55 is an outlier.	1A	Follow through
		(ii) There is no change in the median, which is 74 in both cases.	1 A	Awarded only when (i) is
		The standard deviation decreases as the extreme datum (the outlier) is removed.	1A	correct
			(3)	
			(7)	

		$3x-2$ $3-\frac{2}{x}$		
•	(a)	$\lim_{x \to \infty} \frac{3x - 2}{x + 2} = \lim_{x \to \infty} \frac{3 - \frac{2}{x}}{1 + \frac{2}{x}} = 3$		
		\therefore the equation of the horizontal asymptote to C is $y=3$.	1 A	
		$\lim_{x \to -2^{-}} \frac{3x-2}{x+2} = +\infty \text{ and } \lim_{x \to -2^{+}} \frac{3x-2}{x+2} = -\infty$		
		$x \to 2 x + 2 \qquad x \to -2 x + 2$ $\therefore \text{ the equation of the vertical asymptote to } C \text{ is } x = -2.$	1A	
		• • • • • • • • • • • • • • • • • • • •		
			(2)	
	(b)	/	:	
		6+		
		y = f(x)		
		4+		
		y=3		
		3		
		y = f(x)		
		X = -2		
		$\frac{1}{2}$		
	-8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		-1	1A	For intercepts
			lA lA	For asymptotes
		/-2	IA	For shape
		_3+		(pp-1) for origin and label
				of axes were all missing
		<u> </u>	(3)	

	Solution	Marks	Remarks
(c) (i)	$f(x) = \frac{3x - 2}{x + 2}$		
	$f'(x) = \frac{(x+2)(3) - (3x-2)(1)}{(x+2)^2}$	1A	For numerator
	$=\frac{8}{(x+2)^2}$		
	So the equation of L_1 is $y-k=f'(h)(x-h)$		
	$y - \frac{3h-2}{h+2} = \frac{8}{(h+2)^2}(x-h)$	1M	
	$(h+2)^2 y - (3h-2)(h+2) = 8x - 8h$		
	$8x - (h+2)^2 y + 3h^2 - 4h - 4 = 0$	1	Follow through
(ii)	(1) If L_1 passes through the origin, then		er en
	$8(0) - (h+2)^{2}(0) + 3h^{2} - 4h - 4 = 0$		
	$h=2$ or $\frac{-2}{3}$ (rejected since P lies in the first quadrant)	1A	(pp-1) if $\frac{-2}{3}$ was not rejected
	$\therefore k = \frac{3(2) - 2}{(2) + 2} = 1$		
	Slope of $L_2 = \frac{[(2)+2]^2}{-8} = -2$	1 M	,
	Hence the equation of L_2 is $y-1=-2(x-2)$ i.e. $2x+y-5=0$	1A	
	(2) The x-intercept of L_2 is $\frac{5}{2}$		
	So the required area		5
	$= \int_{\frac{2}{3}}^{2} \frac{3x-2}{x+2} dx + \frac{1}{2} \left(\frac{5}{2} - 2 \right) (1)$	1A+1A	$OR = \cdots + \int_{\frac{1}{2}}^{\frac{5}{2}} (5 - 2x) dx$
	$= \int_{\frac{2}{3}}^{2} \left(3 - \frac{8}{x+2}\right) dx + \frac{1}{2} \left(\frac{1}{2}\right) (1)$	1M	OR = + $\int_{2}^{5} (5-2x) dx$ For $3 - \frac{8}{x+2}$
	$= [3x - 8 \ln x + 2] \frac{2}{3} + \frac{1}{4}$		
,	$= \frac{17}{4} + 8 \ln \frac{2}{3}$	1 A	OR 1.0063
		(10)	

			Solution	Marks	Remarks
8.	(a)	(i)	$N'(t) = \frac{20}{1 + he^{-kt}} (t \ge 0)$		
			$ \ln\left[\frac{20}{N'(t)}-1\right] = -kt + \ln h $	1A	
		(ii)	$ \ln h = 1.5 h = e^{1.5} $	1M ≪	
			≈ 4.4817 (correct to 4 d.p.)	1 A	Either One
			$-k = \frac{1.5 - 0}{0 - 7.6}$	•	
			$k = \frac{15}{76}$ $\approx 0.1974 \text{ (correct to 4 d.p.)}$	1A	
				(4)	
	(b)	(i)	$v = 4.5 + e^{0.2t}$		
			$\frac{\mathrm{d}v}{\mathrm{d}t} = 0.2e^{0.2t}$	1A	
			$N(t) = \int \frac{20}{1 + 4.5e^{-0.2t}} dt$		
		٠	$= \int \frac{100}{e^{0.2t} + 4.5} (0.2e^{0.2t}) dt$		
			$=\int \frac{100}{v} dv$	1 M	
			$=100\ln \nu +C$		
			= $100 \ln(4.5 + e^{0.2t}) + C$ $(: 4.5 + e^{0.2t} > 0)$ Since N(0) = 50, so $C = 50 - 100 \ln 5.5$	IA IM	
			i.e. $N(t) = 100 \ln \frac{4.5 + e^{0.2t}}{5.5} + 50$	1A	
			5.5		
		(ii)	(1) $M(20) = N(20)$ $\begin{bmatrix} 1 & 4.5 & 0.2(20) \end{bmatrix}$ 4.5 + $e^{0.2(20)}$		
			$21\left[(20) + \frac{4.5}{0.2}e^{-0.2(20)} \right] + b = 100 \ln \frac{4.5 + e^{0.2(20)}}{5.5} + 50$		
			$b \approx -141.2090$	1A	
			(2) Consider M'(t) – N'(t) = $21(1-4.5e^{-0.2t}) - \frac{20}{10000000000000000000000000000000000$	1 A	For the 1 st term
			$= 21(1 - 4.5e^{-0.2t}) - \frac{20}{1 + 4.5e^{-0.2t}}$ $= \frac{1 - 425.25e^{-0.4t}}{1 + 4.5e^{-0.2t}}$	171	. Tor the Talenth
			$=\frac{1+4.5e^{-0.2t}}{1+4.5e^{-0.2t}}$	1 A	
	,		$M'(t) - N'(t) > 0$ when $e^{-0.4t} < \frac{1}{425.25}$	1M	
			i.e. $t > \frac{\ln 425.25}{0.4} \approx 15.1317$	1 A	
			Since $M(20) = N(20)$ and $M(t) - N(t)$ is increasing when $t > 20$, so $M(t) > N(t)$ for $t > 20$.		
			Hence the biologist's claim is correct.	1 A	Follow through
				(11)	

Solution	Marks	Remarks
(a) (i) $\int_0^{10} \frac{1}{40} \sqrt{1+t^2} dt$		
$\approx \frac{10}{2(4)} \cdot \frac{1}{40} \left(\sqrt{1+0^2} + 2\sqrt{1+2.5^2} + 2\sqrt{1+5^2} + 2\sqrt{1+7.5^2} + \sqrt{1+10^2} \right)$	1 M	
≈ 1.305182044 ≈ 1.3052	1A	
So the increase of temperature is about 1.3052 °C.		
(ii) $\frac{d}{dt} \left(\frac{1}{40} \sqrt{1 + t^2} \right) = \frac{t}{40 \sqrt{1 + t^2}}$		
$\frac{d^2}{dt^2} \left(\frac{1}{40} \sqrt{1 + t^2} \right) = \frac{1}{40(1 + t^2)^{\frac{3}{2}}}$	1A	
> 0 Hence it is an over-estimate.	1A	Follow through
·	(4)	
(b) (i) $100(\ln x_0)^2 - 630 \ln x_0 + 1960 = 968$		
$50(\ln x_0)^2 - 315 \ln x_0 + 496 = 0$	1A	
$\ln x_0 = \frac{31}{10} \text{ or } \frac{16}{5}$		
$x_0 \approx 22.1980$ or 24.5325	1A	
(ii) $W'(x) = \frac{200 \ln x}{x} - \frac{630}{x}$	1 A	
∴ W'(x) < 0 when $200 \ln x - 630 < 0$ (∴ $x \ge 22$)		
i.e. $22 \le x < e^{3.15} \approx 23.3361$	1A	Accept $x < 23.3361$
(iii) $\frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\mathrm{d}W}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t}$		
$= \frac{200 \ln x - 630}{x} \cdot \frac{\sqrt{1 + t^2}}{40}$ When $t = 0$, $x = 22$.	1M	·
$\therefore \frac{dW}{dt}\bigg _{t=0} = \frac{200 \ln 22 - 630}{22} \cdot \frac{\sqrt{1+0}}{40}$	1 M	
≈ -0.0134	1A	
Hence the rate of change of electricity consumption at $t = 0$ is -0.013 units per year.	34	
(iv) The electricity consumption at $t = 10$ is approximately W(22+1.305182044)	1 M	·
$= 100(\ln 23.305182044)^2 - 630 \ln 23.305182044 + 1960$		
\approx 967.7502 units Since the estimate in (a)(i) is an over-estimate, the actual temperature where the estimate is a second contract of the co		
t = 10 is $x < 23.305182044$. Moreover, W(x) is decreasing for $22 \le x < 23.3361$ by (b)(ii).	} 1M	
Therefore the actual electricity consumption is larger than this estimate.	1A	Follow through
	(11)	

(a)	Solution The required probability	Marks	Remarks
. (a)	$=1 - \left(\frac{3.9^{0} e^{-3.9}}{0!} + \frac{3.9^{1} e^{-3.9}}{1!} + \frac{3.9^{2} e^{-3.9}}{2!} + \frac{3.9^{3} e^{-3.9}}{3!}\right)$ ≈ 0.546753239	1M+1M	1M for cases correct 1M for Poisson probability
	≈ 0.5468	1A (3)	_
(b)	The required probability = 1 - P(no busy counters are found after the 4th counter is checked)		
	$\approx 1 - (1 - 0.546753239)^4$ ≈ 0.9578	1M 1A	
	Alternative Solution 1 The required probability		
	$\approx C_1^4 (0.546753239)(1 - 0.546753239)^3 + C_2^4 (0.546753239)^2 (1 - 0.546753239)^2 + C_3^4 (0.546753239)^3 (1 - 0.546753239) + (0.546753239)^4 \approx 0.9578$	1M 1A	1M for Binomial probability
	Alternative Solution 2 The required probability $\approx (0.546753239) + (1 - 0.546753239)(0.546753239)$		
	$+(1-0.546753239)^{2}(0.546753239)+(1-0.546753239)^{3}(0.546753239)$ ≈ 0.9578	1M 1A	1M for Geometric probability
		(2)	_
(c)	The required probability $\approx (0.546753239)^{10} + C_9^{10}(0.546753239)^9 (1 - 0.546753239)$		
	$+C_8^{10}(0.546753239)^8(1-0.546753239)^2$ ≈ 0.096004444 ≈ 0.0960	1M+1M 1A	1M for cases correct 1M for Binomial probabilit
	i	(3)	
(d)	The required probability		
	$\approx C_8^{10} (0.546753239)^8 (1 - 0.546753239)^2 \times \frac{2}{10}$		
	$+C_9^{10}(0.546753239)^9(1-0.546753239)\times\frac{1}{10}+0$	1M+1A	1M for form correct
	≈ 0.0167	1A (3)	
(e)	The required probability	:	
	$(0.546753239)^{10} \times [(0.546753239)^5 + C_4^5 (0.546753239)^4 (1 - 0.546753239)]$		
	$\approx \frac{+C_9^{10}(0.546753239)^9(1-0.546753239)\times(0.546753239)^5}{0.096004444}$	M+1M+1A	1M for denominator using (1M for numerator form corre
	Alternative Solution		1A for numerator correct
	The required probability		1M for denominator using (
	$\approx \frac{(0.546753239)^{15} + C_{14}^{15}(0.546753239)^{14}(1 - 0.546753239)}{0.096004444}$	M+1M+1A	1M for numerator form corre
L	≈ 0.0163		1A for numerator correct
	~ 0.0103	1A (4)	

	Solution	Marks	Remarks
(a)	The required probability $= \frac{1.8^{0} e^{-1.8}}{0!} + \frac{1.8^{1} e^{-1.8}}{1!} + \frac{1.8^{2} e^{-1.8}}{2!} + \frac{1.8^{3} e^{-1.8}}{3!} + \frac{1.8^{4} e^{-1.8}}{4!}$ ≈ 0.963593339	1M+1M	1M for $P(X \le 4)$ 1M for Poisson probability with correct λ
	≈ 0.9636	1A	
		(3)	
(b)	$p_0 = P\left(Z > \frac{4.6 - 3}{0.8}\right) = P(Z > 2) = 0.5 - 0.4772 = 0.0228$) IM	For standardization
	$p_2 = P\left(Z < \frac{2-3}{0.8}\right) = P(Z < -1.25) = 0.5 - 0.3944 = 0.1056$	\rightarrow 1A	For any one correct
	$p_1 = 1 - p_0 - p_2 = 1 - 0.0228 - 0.1056 = 0.8716$) 1A	For all correct
		(3)	
	•		
(c)	$=C_1^3 p_2 p_1^2 + C_1^3 p_2^2 p_0$	lM	1M for form correct
	= $3(0.1056)(0.8716)^2 + 3(0.1056)^2(0.0228)$ ≈ 0.241431455 ≈ 0.2414	1 A	
	(ii) The required probability		
	$= C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!1!} p_2 p_1^2 p_0 + p_1^4$	1M	1M for form correct
	$= 6(0.1056)^{2}(0.0228)^{2} + 12(0.1056)(0.8716)^{2}(0.0228) + (0.8716)^{4}$ ≈ 0.599107436	1 A	
	≈ 0.5991 ≈ 0.5991	1A	
		(5)	
(d)	The required probability		
	$\approx \frac{\frac{1.8^{2}e^{-1.8}}{2!}(0.1056)^{2} + \frac{1.8^{3}e^{-1.8}}{3!}(0.241431455) + \frac{1.8^{4}e^{-1.8}}{4!}(0.599107436)}{0.963593339}$ ≈ 0.0883	1M+1M+1A 1A	1M for any 2 cases 1M for denominator using 1A for all correct
		(4)	

. (a)) TL	Solution e required probability	Marks	Remarks
. (a _,	= 1 ≈ (The required probability $1 - \left[(1 - 0.01)^{40} + C_1^{40} (1 - 0.01)^{39} (0.01) + C_2^{40} (1 - 0.01)^{38} (0.01)^2 \right]$ 0.007497363 0.0075	1M+1M	1M for cases correct 1M for Binomial probability (Can be awarded in (d)(i))
			l IA	
			(3)	
(h)	\ Th.	e required probability		
(0,		(1 – 0.007497363) ⁴ (0.007497363)	43.5	
		0.0073	1M	
			1A	
			(2)	·
]	
		L 1	<u> </u> 	
(c)		$(0.007497363)(1-0.007497363)^{k-1} + C_2^k(0.007497363)^2(1-0.007497363)^{k-1}$		
	+	$C + C_{k-1}^{k} (0.007497363)^{k-1} (1 - 0.007497363) + (0.007497363)^{k} > 0.05$		
	Alt	ernative Solution	 	
	'	$07497363 + (1 - 0.007497363)(0.007497363) + (1 - 0.007497363)^{2}(0.007497363)$	62)	
		$+(1-0.007497363)^{k-1}(0.007497363)>0.05$		
	1-	$(1 - 0.007497363)^k > 0.05$	1M	
	0.9	$92502636^k < 0.95$		
	k ln	$0.992502636 < \ln 0.95$	1M	
	<i>k</i> >	$\frac{\ln 0.95}{\ln 0.992502636} \approx 6.815832223$		
	Hen	In 0.992502636 ace the least value of k is 7.	1A	
		100 100 100 100 100 100 100 100 100 100	I.A.	
			(3)	
(d)	(i)	The required probability		
(-)	(.)	$= 1 - \left[(1 - 0.015)^{40} + C_1^{40} (1 - 0.015)^{39} (0.015) + C_2^{40} (1 - 0.015)^{38} (0.015)^2 \right]$		
		≈ 0.022069897	į	
		≈ 0.0221	1A	
	(ii)	The required probability		
	()	$= [C_0^8 (1 - 0.007497363)^8 (0.007497363)^0] [C_2^{12} (1 - 0.022069897)^{10} (0.022069897)^2]$	ļ	
		$+[C_1^8(1-0.007497363)^7(0.007497363)][C_1^{12}(1-0.022069897)^{11}(0.022069897)]$		
		$+[C_2^8(1-0.007497363)^6(0.007497363)^2][C_0^{12}(1-0.022069897)^{12}(0.022069897)^0]$	IM+IM	1M for any 1 case correct
		≈ 0.037154780		1M for all cases correct
		≈ 0.0372	1A	
	(iii)	The required probability		
		$= \frac{\left[C_0^8(1 - 0.007497363)^8(0.007497363)^0\right]\left[C_2^{12}(1 - 0.022069897)^{10}(0.022069897)^2\right]}{\left[C_0^{12}(1 - 0.022069897)^{10}(0.022069897)^{10}\right]}$		1M for form correct
		0.037154780	IM+IM	1M for denominator using (ii)
		≈ 0.6517	1A	
		-	(7)	
		. L		