只限教師參閲

FOR TEACHERS' USE ONLY

Hong Kong Certificate of Education Examination Mathematics Paper 1

Scanned By [SuNView]-[MaX]

1.

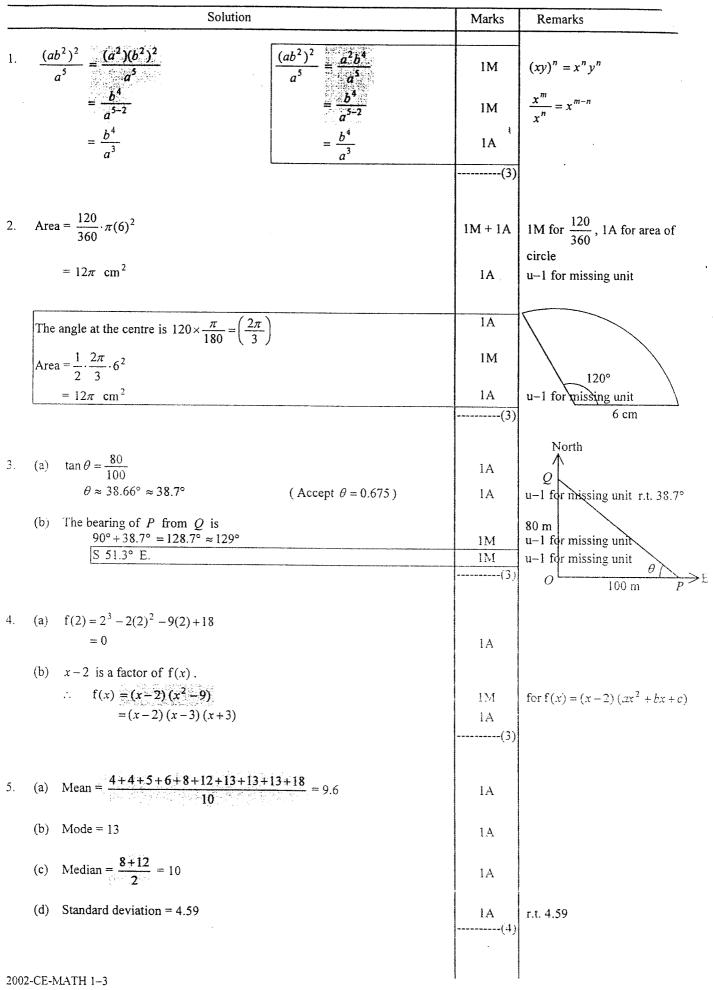
General Marking Instructions

It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits *all the marks* allocated to that part, unless a particular method has been specified in the question. Makers should be patient in marking alternative solutions not specified in the marking scheme.

2. In the marking scheme, marks are classified into the following three categories:

'M' marks	awarded for correct methods being used;
'A' marks	awarded for the accuracy of the answers;
Marks without 'M' or 'A'	awarded for correctly completing a proof or arriving
	at an answer given in a question.

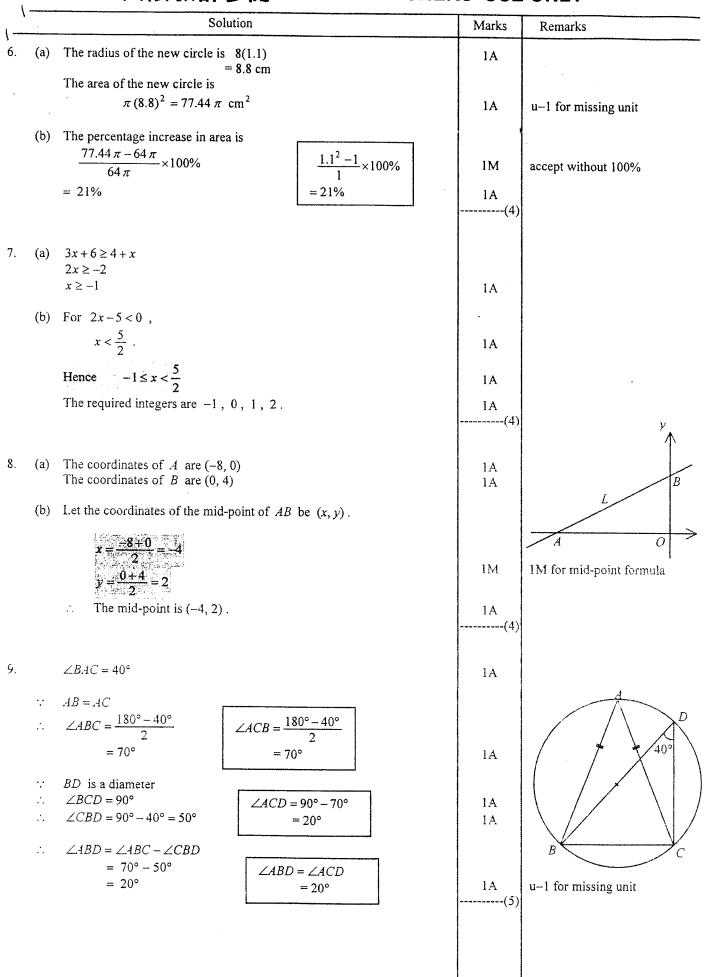
In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).


- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. Use of notation different from those in the marking scheme should not be penalized.
- 5. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 6. Marks may be deducted for wrong units (*u*) or poor presentation (*pp*).
 - a. The symbol (u-1) should be used to denote 1 mark deducted for u. At most deduct 1 mark for u for the whole paper.
 - b. The symbol (pp-1) should be used to denote 1 mark deducted for pp. At most deduct 2 marks for pp for the whole paper. For similar pp, deduct 1 mark for the first time that it occurs. Do not penalize candidates twice in the paper for the same pp.
 - c. At most deduct 1 mark in each question. Deduct the mark for u first if both marks for u and pp may be deducted in the same question.
 - d. In any case, do not deduct any marks for *pp* or *u* in those steps where candidates could not score any marks.
- 7. Marks entered in the Page Total Box should be the NET total scored on that page.
- 8. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to', 'f.t.' stands for 'follow through' and 'or equivalent' means 'accepting equivalent forms of the equation which has been simplified and without uncollected like terms'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

2002-CE-MAAH1--2

中限效前參聞

只限教師參閱


FOR TEACHERS' USE ONLY

只限教師參閱 FOR TEACHERS' USE ONLY

只限教師參閱

FOR TEACHERS' USE ONLY

2002-CE-MATH 1-4

只限教師參閱

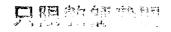
只限教師參閱

FOR TEACHERS' USE ONLY

······	Solution			Marks	Remarks
(a)	$\therefore AB = AC$ $\therefore \angle B = \frac{180^\circ}{24^\circ} = 80^\circ$			1A	Å
	$BC = CE$ $\angle CEB = \angle B = 80^{\circ}$ $\angle BCE = 180^{\circ} - 80^{\circ} - 80^{\circ} = 20^{\circ}$ $\angle ECF = \angle ACB - \angle BCE$			1M	20° D
	$= 60^{\circ}$ $\therefore CE = EF$			1M	
	$\therefore \angle CEF = 60^{\circ}$			1A (4)	u–1 for missing unit
(b)	$\angle DEF = 180^{\circ} - 60^{\circ} - 80^{\circ}$ $= 40^{\circ}$ $\therefore EF = FD$	(adj.∠s on st. line)	[直線上	.的鄰角]	
	$\therefore \angle FDE = \angle DEF \\ = 40^{\circ}$ In $\triangle ADF$,	(base∠s of isos. ∆)	[等腰∆	底角]	
	$\angle DFA = 40^{\circ} -20^{\circ}$ $= 20^{\circ}$ $= \angle DAF$	$(\operatorname{ext} \angle \operatorname{of} \Delta)$	[∆的外	•角]	- <u></u> C
	$\therefore \angle DFE = 180^\circ - 40^\circ - 40^\circ$ $= 100^\circ$	(∠ sum of Δ)			[△內角和]
	$\angle AFD = 180^{\circ} - 100^{\circ} - 60^{\circ}$ $= 20^{\circ}$ $\therefore \angle DFA = \angle DAF$	(adj. ∠s on st. line)			[直線上的鄰角]
	$\angle CFE = 60^{\circ}$ $\angle AEF = 60^{\circ} - 20^{\circ} = 40^{\circ}$ $\therefore \angle EDF = 40^{\circ}$ $\therefore \angle AFD = 40^{\circ} - 20^{\circ}$	$(\angle \text{ of equilateral } \Delta)$ (ext $\angle \text{ of } \Delta AEF$) (base $\angle \text{ s of isos. } \Delta$) (ext $\angle \text{ of } \Delta ADF$)			[等邊Δ性質] [Δ的外角] [等腰Δ底角] [Δ的外角]
	$= 20^{\circ}$ $\therefore AD = DF$	(base \angle s of $\triangle =$)			[等角對邊相等] [底角相等] [等邊對等角] [等角對等] [等腰Δ底角等的逆定理]
	Marking Scheme :	an a fa fa na fa		NING WORKS BY A SHORE AN A SHOP	zamin with 10ks and a scheme in open and an activity of the scheme of the flag
	Case 1 Any correct proof with correct reasons.			3	
	Case 2 Any correct proof without r	easons.		2	
	Case 3 Incomplete proof with any $\angle DFE$) and with correct re		4 <i>EF</i> ,	1	
				(3)	an a

2002-CE-MATH 1-5

只限教師參開


- €
- C)

······	Solution	Marks	Remarks
(a) Let $A = aP + bP^2$, Sub. $P = 24$, $A = 36$ 24a + 576b = 3 2a + 48b = 3		1A	
Sub. $P = 18$, $A = 9$, 18a + 324b = 9 2a + 36b = 1		} IM	for substitution (either)
Solving (1) and (2) $a = -\frac{5}{2}$ $b = \frac{1}{6}$		}]	for both
$\therefore A = -\frac{5}{2}P + \frac{1}{6}$	p ²	(3)
(b) (i) When $A = 54$, $-\frac{5}{2}P + \frac{1}{6}P^2 - 15P$	- 324 = 0	1M	
\therefore the require	P = -12 (rejected) d perimeter is 27 cm.	1A	
$\left(\frac{P'}{27}\right)^2 = -$		1M+1A	$1 \text{ M for } \left(\frac{P'}{P}\right)^2 = \frac{8}{54}$
$P' = 6\sqrt{3}$ The perimeter o	(≈ 10.4) f the gold bookmark is $6\sqrt{3}$ (≈ 10.4) cm	ı. 1A (r.t. 10.4

只國教師參調 FOR TEACHERS' USE ONLY

D

		Solution		Marks	Remarks
(a)					
[Number of books read (x)	Number of participants	Award		
ſ	$0 \le x \le 5$	66	Certificate		*
	$5 < x \le 15$	34	Book coupon	h	
	$15 < x \le 25$	64	Bronze medal	\rightarrow 1A	for both
	$25 < x \le 35$	26	Silver medal	IJ	
	$35 < x \le 50$	10	Gold medal		
(b)	Lower quartile = 3.8 Upper quartile = 22.8 Inter-quartile range = 22.8 - = 19	- 3.8		(1) 1M 1A	(22→23) – (3→4) r.t. 19
(c)	64 + 26 + 10 = 10 The number of participant of p	pants who won medals, 0 pants who won gold medals ey both won gold medals	is 10.	(2)	1M for $\frac{p}{q} \times \frac{p-1}{q-1}$, where $p < p$
	$= \frac{1}{110}$ (ii) Both won bronze med	als			1A 0.00909
	$P_1 = \frac{64}{100} \times \frac{63}{99} =$ Both won silver meda $P_2 = \frac{26}{100} \times \frac{25}{99} =$ The probability that the	$\frac{112}{275}$ is $\frac{13}{198}$ ey won different medals		IA	0.4073 for both 0.06566
	$= 1 - \frac{1}{110} - \frac{112}{275}$	$-\frac{13}{198}$		2M	for $1 - (c)(i) - P_1 - P_2$
	$=\frac{1282}{2475}$			1A	0.518
	P(B and S) = $\frac{64}{100} \times \frac{2}{9}$ P(B and G) = $\frac{64}{100} \times \frac{1}{9}$,			· · · · · · · · · · · · · · · · · · ·
	P(S and G) = $\frac{26}{100} \times \frac{1}{9}$	$\frac{0}{9}$ < 2			
	P(different medals) =	P(B and S) + P(B and G) + I	P(S and G)	2M+1A	2M for sum of three different ca $(P'_1 \times 2 + P'_2 \times 2 + P'_3 \times 2)$
	=	<u>1282</u> 2475		1A	0.518
	Name:	· · · · · · · · · · · · · · · · · · ·		(6)	

只限教師參閱 FOR TEACHERS' USE ONLY

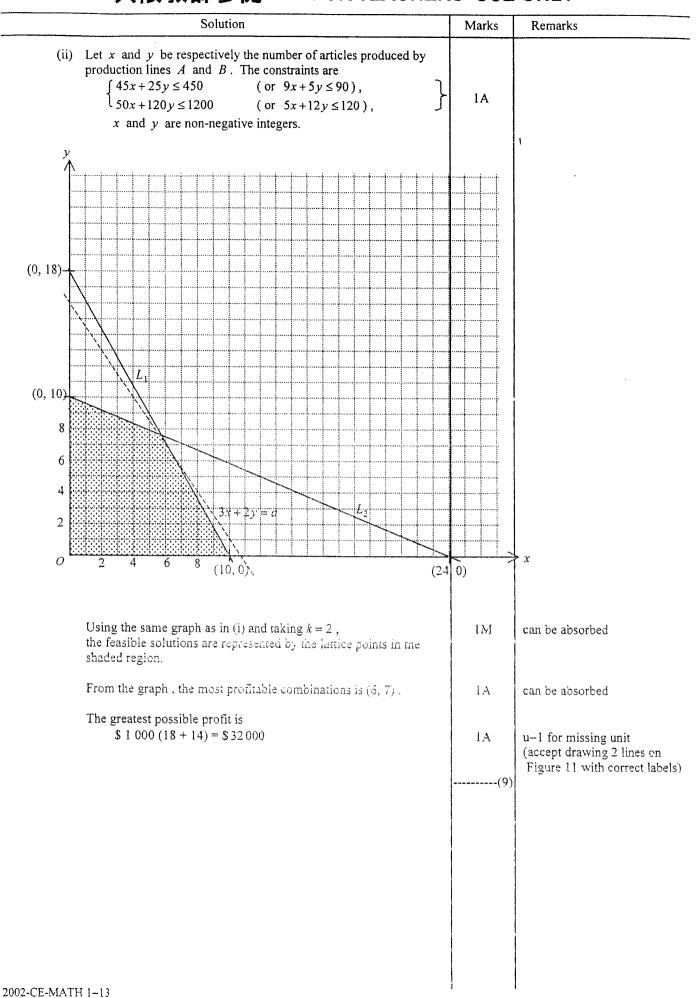
	Solution	Marks	Remarks
3. (a) Area of ∆0	$C_1 C_2 C_3 = \frac{1}{2} (1)(1) \sin 60^\circ$	1A	
	$=\frac{\sqrt{3}}{4}$ m ²	1A	u-1 for missing unit
	7	(2)	5
(b) Each side o	f a smaller triangle = $\frac{1}{3}$ m		
Area of eac	h smaller triangle = $\frac{1}{2}(\frac{1}{3})(\frac{1}{3})\sin 60^\circ = \frac{\sqrt{3}}{36}$ m	2	
	$= 4 \times \frac{\sqrt{3}}{36} + \frac{\sqrt{3}}{4}$	1M+1M	1M for 4 times, 1M for + (a)
=	$=\frac{13\sqrt{3}}{36}$ m ²	IA	u–1 for missing unit
		(3)	
(c) The area $=\frac{\sqrt{3}}{4}+\frac{4}{9}$	$\left(\frac{\sqrt{3}}{4} + \left(\frac{4}{9}\right)^2 \times \frac{\sqrt{3}}{4} + \left(\frac{4}{9}\right)^3 \frac{\sqrt{3}}{4} + \cdots\right)^{3}$	1M + 1A	1M for G. P.
	· () · () ·		
$=\frac{\sqrt{3}}{\frac{4}{1-\frac{4}{9}}}$		lM	for $\frac{a}{1-r}$
$=\frac{9\sqrt{3}}{20}$ m ²		1A	u–1 for missing unit
20			u-1 for missing unit
The area			
$=\frac{\frac{\sqrt{3}}{4}}{1-\frac{4}{4}}$			(a)
		2M+1A	2M for $\frac{(a)}{1-\frac{4}{9}}$
$=\frac{9\sqrt{3}}{20}\mathrm{m}^2$		1A	u–1 for missing unit
20		(4)	
2-CE-MATH 1–8			

只限教師參閱 FOR TEACHERS' USE ONLY

	Solution	Marks	Remarks
4. (a)	$AT = \frac{h}{\tan 20^{\circ}} \text{ m and } BT = \frac{h}{\tan 15^{\circ}} \text{ m}.$ $\therefore BT^{2} = AB^{2} + AT^{2} - 2AB \cdot AT \cos 30^{\circ}$	1A	for both $AT = 2.75 h$ m and BT = 3.73 h m
	$\therefore \left(\frac{h}{\tan 15^\circ}\right)^2 = 900^2 + \left(\frac{h}{\tan 20^\circ}\right)^2 - 2(900)\left(\frac{h}{\tan 20^\circ}\right)\cos 30^\circ$	1M+1A	
	$\left(\frac{1}{\tan^2 15^\circ} - \frac{1}{\tan^2 20^\circ}\right)h^2 + \frac{900\sqrt{3}}{\tan 20^\circ}h - 810000 = 0$	۱M	in the form of $ah^2 + bh + c = 0$
	<i>h</i> ≈153.86 ≈154	1A (5)	r.t. 154
(b)	(i) ES is minimum when $SE \perp AB$ (or $TE \perp AB$).		
	When $TE \perp AB$, $ET = AT \sin 30^\circ = \frac{h \sin 30^\circ}{\tan 20^\circ} (\approx 211.36)$	1A	
	Shortest distance = $\sqrt{h^2 + (AT \sin 30^\circ)^2}$	- 1M	$\sqrt{153.86^2 + 211.36^2}$
	$= h \sqrt{1 + \left(\frac{\sin 30^\circ}{\tan 20^\circ}\right)^2}$ \$\approx 261.43\$		
	$\approx 261 \text{ m}$.	1A	h m u-1 for missing unit (accept 26
		20° 30°	TE5°
		A	900 m
	$AS = \frac{h}{\sin 20^{\circ}} \approx 449.86 \text{ and } SB = \frac{h}{\sin 15^{\circ}} \approx 594.48.$ $\cos \angle SAB = \frac{\left(\frac{h}{\sin 20^{\circ}}\right)^2 + (900)^2 - \left(\frac{h}{\sin 15^{\circ}}\right)^2}{2\left(\frac{h}{\sin 20^{\circ}}\right)(900)} \approx 0.8138.$	1M	
	$\angle S.4B = 35.53^{\circ}$	1A	r.t. 35.5° (can be absorbed) accept $\angle SB.4 = 26.09^{\circ}$
	Shortest distance = $AS \sin \angle SAB$ $\approx \left(\frac{h}{\sin 20^\circ}\right) \sin 35.53^\circ$		
	≈ 261 m	1A	(Accept 262 m)
	(ii) $\therefore \tan \theta = \frac{h}{FT}$	()	
	$\therefore \theta$ is maximum when $TE \perp AB$.	1M	can be omitted
	$\tan \theta_{\max} = \frac{h}{AT \sin 30^{\circ}}$		$ \tan \theta = \frac{h}{ET} = \frac{153.86}{211.36} $
	$=\frac{\tan 20^{\circ}}{\sin 30^{\circ}}$		$\sin \theta = \frac{h}{ES} = \frac{153.86}{261.43}$
	Maximum value of $\theta \approx 36.1^{\circ}$	1A	$\cos \theta = \frac{ET}{ES} = \frac{211.36}{261.43}$
	Hence $15^\circ \le \theta \le 36.1^\circ$.	1A	ES 261.43 u–1 for missing unit

只限教師參問 FOR TEACHERS' LIDE ONLY

			Solution	*****	Marks	Remarks
. (a)	(i)	In $\triangle AOD$ and $\triangle FO$. $\angle AOD = \angle FOB = 0^{\circ}$ $\therefore \ \angle AEB = 90^{\circ}$ $\therefore \ \angle DAO = 90^{\circ}$ On the other hand, $\angle BFO = 90^{\circ}$ $\therefore \ \angle DAO = \angle BB$	90° - ∠ABE - ∠ABE	(given) (∠ in semicircle) (∠ sum of Δ) (∠ sum of Δ)		[已知] [半圓上的圓周角] [Δ內角和] [Δ內角和]
		Hence, $\Delta AOD \sim \Delta F$		(AAA)		[等角] (ÁA) (equiangular)
	Ma	arking Scheme :				STRE .
		se 1 Any correct	proof with corre		3	
				asons. ne correct angle and	2	
	(ii)	In $\triangle AOG$ and $\triangle GG$ $\angle AOG = \angle GOB =$ $\therefore \angle AGB = 90^{\circ}$	90°	(given) (∠ in semicircle)		[已知] [半圓上的圓周角]
		$\therefore \ \angle AGO = 90^{\circ} - \\ = \angle GB$ Thus, $\triangle AOG \sim \triangle GG$	10	(∠ sum of ∆) (AAA)		[Δ內角和] [等角] (AA) (equiangular)
	Ca	arking Scheme : se 1 Any correct se 2 Any correct	proof with correct proof without rea		2	
	(iiii)		$\frac{D}{A} = \frac{OB}{OF}$ $= OA \cdot OB$			
		. 0.	$OG \sim \Delta GOB$ $\frac{4}{G} = \frac{OG}{OB}$			either one
			$OB = OG^2 .$ $= OA \cdot OB = OG$	2	1	75
(b)	(i)	A = (c - r, 0) and	B = (c+r, 0)			
		$m_{AD} = \frac{p}{p - c}$			lA	
		$m_{\partial F} = -\frac{4}{r+c}$			1A	
	(ii)	\therefore $\angle AEB = 90^{\circ}$				[半圓上的圓周角]
		$\therefore \qquad m_{AD} \cdot m_{AD}$ $pq = r^2$	```	$\left(\frac{q}{c}\right) = -1$	1M	
		Since $pq = OL$	$O \cdot OF$ = $CG^2 - OC^2$ =	OG ² ,	1	$\begin{array}{c} G \\ G \\ D \\ C \\ \end{array}$


以限款銅參詞 FOR TEACHERS' USE ONLY

$\frac{3}{1}$ Volume of water in the cylinder = $\pi \cdot 6^2 h = 36\pi h$ cm ³ Volume of water in the cone = $\frac{1}{3}\pi \cdot 9^2 \cdot 24 \cdot \left(\frac{h+5}{24}\right)^3$ cm ³ $\frac{1}{1}$ IM+1A IM for $V = V' \cdot \left(\frac{h+5}{24}\right)^3$ Let <i>r</i> cm be the radius of the water surface in the cone when water is being poured into the cylinder. Then $\frac{r}{h+5} = \frac{9}{24}.$ Volume of water remains in the cone $= \frac{\pi}{3} \left[\frac{3}{8}(h+5)\right]^2 (h+5) = \frac{3\pi}{64}(h+5)^3 \text{ cm}^3.$ IM		Solution	Marks	Remarks
Volume of water in the cone $=\frac{1}{3}\pi \cdot 9^2 \cdot 24 \cdot \left(\frac{h+5}{24}\right)^3$ cm ³ $1M+1A$ $1M \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24}$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = F' \cdot \left(\frac{h+5}{24}\right)^3$ $\frac{1}{24} \text{ for } F = $	15. (a) (i)	5		
being poured into the cylinder. Then $\frac{r}{h+5} = \frac{9}{24}$. Volume of water remains in the cone $= \frac{\pi}{3} \left[\frac{3}{8} (h+5) \right]^2 (h+5) = \frac{3\pi}{64} (h+5)^3 \text{ cm}^3$. IM $\frac{1}{3} \pi \cdot 9^2 \cdot 24 \cdot \left[1 - \left(\frac{h+5}{24} \right)^3 \right] = \pi \cdot 6^2 h$ $1 - \left(\frac{h+5}{24} \right)^3 = \frac{h}{18}$ $h^3 + 15h^2 + 75h + 125 = 768(18 - h)$ $h^3 + 15h^2 + 75h + 125 + 768h = 13824$ $h^3 + 15h^2 + 843h - 13699 = 0$ (ii) Let $f(h) = h^3 + 15h^2 + 843h - 13699$ \therefore The value of h lies between 11 and 12. $\frac{a}{115} \frac{b}{12} + 11.8 \text{ correct to 1 decimal place}$ \therefore 11.75 $h < 11.8125$ h < 11.8 correct to 1 decimal place (b) The situation in Figure 9(b) is the same as the situation in Figure 9(a) if the lower part (5 cm height) of the water of the cone is ignored. Thus the depth of water in the frustum is h cone x = 11.8 cm 2M 2M for the answer in (a)(ii)		Volume of water in the cone = $\frac{1}{3}\pi \cdot 9^2 \cdot 24 \cdot \left(\frac{h+5}{24}\right)^3$ cm ³		1M for $V = V' \cdot \left(\frac{h+5}{24}\right)^3$
Then $\frac{r}{h+5} = \frac{9}{24}$. Volume of water remains in the cone $= \frac{\pi}{3} \left[\frac{3}{8} (h+5) \right]^2 (h+5) = \frac{3\pi}{64} (h+5)^3 \text{ cm}^3$. $\therefore \frac{3\pi}{64} (h+5)^3 + 36\pi h = 648\pi$ $1 - \left(\frac{h+5}{24}\right)^3 = \frac{h}{18}$ $h^3 + 15h^2 + 75h + 125 = 768(18-h)$ $h^3 + 15h^2 + 75h + 125 = 768(18-h)$ $h^3 + 15h^2 + 843h - 13699 = 0$ (ii) Let $f(h) = h^3 + 15h^2 + 843h - 13699 = 0$ \therefore The value of h lies between 11 and 12. $\boxed{\frac{a}{11.5} \frac{b}{12(h+5)} = 12 + 11.875 + 101}{11.75 - 11.8125 + 101}$ 11.75 - 11.8125 + 101 11.75 - 11.8125 + 102 + 1		Let r cm be the radius of the water surface in the cone when water i	s	
$ \begin{array}{c c} = \frac{\pi}{3} \left[\frac{3}{8} (h+5) \right]^2 (h+5) = \frac{3\pi}{64} (h+5)^3 \text{ cm}^3. \\ & 1 \\ \hline & \frac{3\pi}{64} (h+5)^3 + 36\pi h = 648\pi \\ & 1 - \left(\frac{h+5}{24}\right)^3 = \frac{h}{18} \\ & h^3 + 15h^2 + 75h + 125 = 768(18-h) \\ & h^3 + 15h^2 + 75h + 125 = 768(18-h) \\ & h^3 + 15h^2 + 843h - 13699 = 0 \\ \hline & \text{(ii) Let } f(h) = h^3 + 15h^2 + 843h - 13699 \\ \hline & \text{(f11)} = -1280 < 0 \text{ and } f(12) = 305 > 0 \\ \hline & \text{The value of } h \text{ lies between 11 and 12}. \\ \hline & \frac{a}{[8a) < 0]} \frac{b}{[8(b) > 0]} \frac{m = \frac{a+b}{2}}{1.75} \frac{f(m)}{-101} \\ \hline & 11.5 & 12 & 11.75 & -101 \\ \hline & 11.75 & 11.8125 & +0.224 \\ \hline & 11.75 & 11.8125 & +0.224 \\ \hline & 11.75 & 11.8125 & +0.224 \\ \hline & 11.75 & 11.8125 & -500 \\ \hline & \text{(b) The situation in Figure 9(b) is the same as the situation in Figure 9(a) if the lower part (5 cm height) of the water of the cone is ignored. \\ \hline & \text{Thus the depth of water in the frustum is } h cm \\ & \approx 11.8 \text{ cm} \end{array} $		Then $\frac{r}{h+5} = \frac{9}{24}$.	1A	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1M	
$1 - \left(\frac{h+5}{24}\right)^3 = \frac{h}{18}$ $h^3 + 15h^2 + 75h + 125 = 768(18 - h)$ $h^3 + 15h^2 + 75h + 125 + 768h = 13824$ $h^3 + 15h^2 + 843h - 13699 = 0$ (ii) Let f (h) = h^3 + 15h^2 + 843h - 13699 $\therefore \text{ft}(11) = -1280 < 0 \text{ and } f(12) = 305 > 0$ $\therefore \text{The value of } h \text{ lies between } 11 \text{ and } 12$. $\boxed{\frac{a b}{11 12 11.5 -500}}_{11.5 12 11.75 -101}_{11.75 11.8125 +0.224}$ $\therefore 11.75 \leq h < 11.8125$ $\therefore 11.75 \leq h < 11.8125$ $h < 11.8 (\text{correct to 1 decimal place})$ (b) The situation in Figure 9(b) is the same as the situation in Figure 9(a) if the lower part (5 cm height) of the water of the cone is ignored. Thus the depth of water in the fustum is h cm} < 11.8 \text{ cm} $2M 2M \text{ for the answer in (a)(ii)}$				
$h^{3} + 15h^{2} + 75h + 125 = 768(18 - h)$ $h^{3} + 15h^{2} + 75h + 125 + 768h = 13824$ $h^{3} + 15h^{2} + 843h - 13699 = 0$ (ii) Let f (h) = h^{3} + 15h^{2} + 843h - 13699 = 0 (ii) Let f (h) = h^{3} + 15h^{2} + 843h - 13699 $\therefore f(11) = -1280 < 0 \text{ and } f(12) = 305 > 0$ $\therefore \text{ The value of } h \text{ lies between 11 and 12}.$ $\boxed{\frac{a}{[f(x) < 0]} \frac{b}{[f(b) > 0]} \frac{m}{m} = \frac{a + b}{2} \frac{f(m)}{11}}{\frac{11}{1.5} \frac{12}{11.75} \frac{11.875}{1.18125} \frac{+101}{11.75}}$ $\frac{1}{11.75} \frac{11.875}{11.8125} \frac{+102}{11.75} \frac{11.8125}{1.18125} \frac{+0.224}{1.1.75}$ (b) The situation in Figure 9(b) is the same as the situation in Figure 9(a) if the lower part (5 cm height) of the water of the cone is ignored. Thus the depth of water in the frustum is h cm} \approx 11.8 \text{ cm} $2M 2M \text{ for the answer in (a)(ii)}$			1M	$\left \frac{1}{3}\pi \cdot 9^2 \cdot 24 \cdot \left[1 - \left(\frac{h+5}{24}\right)^3\right] = \pi \cdot 6^2 h$
$\frac{h^{3} + 15h^{2} + 75h + 125 + 768h = 13824}{h^{3} + 15h^{2} + 843h - 13699 = 0}$ (ii) Let f (h) = $h^{3} + 15h^{2} + 843h - 13699$ \therefore f(11) = $-1280 < 0$ and f(12) = $305 > 0$ \therefore The value of h lies between 11 and 12. $\frac{a}{11.5} \frac{b}{12} \frac{11.5}{12} \frac{11.5}{11.75} \frac{-500}{-101}$ IM $\frac{11.5}{11.75} \frac{12}{11.8125} \frac{11.8125}{+101}$ \therefore 11.75 < h < 11.8125 \therefore 11.75 < h < 11.8125 \therefore 11.75 < h < 11.8125 $h \approx 11.8$ (correct to 1 decimal place) (b) The situation in Figure 9(b) is the same as the situation in Figure 9(a) if the lower part (5 cm height) of the water of the cone is ignored. Thus the depth of water in the frustum is h cm ≈ 11.8 cm 2M for the answer in (a)(ii)		$1 - \left(\frac{h+5}{24}\right)^3 = \frac{h}{18}$		
$h^{3} + 15h^{2} + 843h - 13699 = 0$ (ii) Let $f(h) = h^{3} + 15h^{2} + 843h - 13699$ \therefore f(11) = -1280 < 0 and f(12) = 305 > 0 \therefore The value of h lies between 11 and 12. $\frac{a}{[f(a) < 0]} \frac{b}{[f(b) > 0]} \frac{m}{m} = \frac{a+b}{2} \frac{f(m)}{11}$ 1M Testing sign of mid-value (h) $\frac{11.5}{11.2} \frac{11.75}{11.875} \frac{-500}{1101}$ 1M Choosing the correct interval $\frac{11.75}{11.875} \frac{11.875}{11.8125} \frac{+0.224}{11.75}$ (b) The situation in Figure 9(b) is the same as the situation in Figure 9(a) if the lower part (5 cm height) of the water of the cone is ignored. Thus the depth of water in the frustum is h cm ≈ 11.8 cm 2M 2M for the answer in (a)(ii)			lA	for expanding $(h+5)^3$
$\begin{array}{c c} & f(11) = -1280 < 0 \text{ and } f(12) = 305 > 0 \\ \hline & \text{The value of } h \text{ lies between 11 and 12} \\ \hline & \hline \\ & \hline \\ \hline \\ & \hline \\ \hline \\ & \hline \\ \hline \\$			1	
$\frac{\left[f(\alpha) < 0\right]}{11} \qquad \frac{\left[f(b) > 0\right]}{12} \qquad \frac{m}{2} \qquad \frac{f(m)}{2} \qquad 1M \qquad \text{Testing sign of mid-value}}{11.5 \qquad 12 \qquad 11.75 \qquad -101} \qquad 1M \qquad \text{Testing sign of mid-value} \\ \frac{11.75}{11.75} \qquad 12 \qquad 11.875 \qquad +101 \qquad 1M \qquad \text{Testing sign of mid-value}}{1M} \qquad M \qquad Choosing the correct interval} \\ \frac{11.75}{11.75} \qquad 11.8125 \qquad +0.224 \qquad 1M \qquad 1M \qquad 1M \qquad 1M \qquad Choosing the correct interval} \\ \frac{11.75 \qquad 11.8125 \qquad +0.224 \qquad 1M}{11.75 \qquad 11.8125 \qquad +0.224 \qquad 1M \qquad 1M \qquad 1M \qquad M \qquad Choosing the correct interval} \\ 11.75 < h < 11.8125 \qquad -0.224 \qquad 1M \qquad M \qquad $	(ii)	f(11) = -1280 < 0 and $f(12) = 305 > 0$	1M	
$h \approx 11.8 (\text{correct to 1 decimal place}) \qquad 1A \qquad 1A \qquad (9)$ (b) The situation in Figure 9(b) is the same as the situation in Figure 9(a) if the lower part (5 cm height) of the water of the cone is ignored. Thus the depth of water in the frustum is $h \text{ cm}$ $\approx 11.8 \text{ cm} \qquad 2M \qquad 2M \text{ for the answer in (a)(ii)}$		$[f(a) < 0]$ $[f(b) > 0]$ $m = \frac{1}{2}$ $f(m)$ 11 12 11.5 -500 11.5 12 11.75 -101 11.75 12 11.875 +101 11.75 11.875 11.8125 +0.224		Testing sign of mid-value Choosing the correct interval
 (b) The situation in Figure 9(b) is the same as the situation in Figure 9(a) if the lower part (5 cm height) of the water of the cone is ignored. Thus the depth of water in the frustum is			1	f.t.
	if th	he lower part (5 cm height) of the water of the cone is ignored. Is the depth of water in the frustum is h cm		
	CL-CE-MATH	i 1-10		

回图教師參問 FOR TEACHERS' USE ONLY

/	— 只限教師參閱 FOR TEACHE	·····	
. <u></u>	Solution	Marks	Remarks
7. (a)	Equation of L_1 : $\frac{y-9k}{x} = -\frac{9}{5}$ 9x + 5y = 45k	1M	$\frac{x}{5k} + \frac{y}{9k} = 1$
	Equation of L_2 : $\frac{y-5k}{x} = -\frac{5}{12}$ $5x + 12y = 60k$	1A (2)	$\frac{x}{12k} + \frac{y}{5k} = 1$ for both equations
(b)	lines A and B. The constraints are $\begin{cases} 45x + 25y \le 225 & \text{(or } 9x + 5y \le 45), \\ 50x + 120y \le 600 & \text{(or } 5x + 12y \le 60), \\ x \text{ and } y \text{ are non-negative integers.} \end{cases}$ The profit is \$1000 (3x + 2y). Using the graph in Figure 11 with $k = 1$, the feasible solutions as	1A 1A 1A	withhold 1 mark for strict inequa
	represented by the lattice points in the shaded region below. y		
(0, 9)			
3 <i>x</i> + 2			
(0, 5)			
			x
	$(5, \dot{0})$ (1) From the graph, the most profitable combinations are (3, 3) and (3)	2 , 0)	
	At (3, 3), the profit is $1000(9+6) = 15000$ At (5, 0), the profit is $1000(15+0) = 15000$ At (0, 5), the profit is $1000(10) = 10000$ At (2, 4), the profit is $1000(6+3) = 14000$	} IM	Testing
	The greatest possible profit is \$ 15 000 .	1.A	u-1 for missing unit

只限数额急的 FOR TEACHERS' USE ONLY

只限教師參照