HKCEE 1994
 Mathematics II

94 If $\mathrm{f}(x)=x^{2}+2 x$, then $\mathrm{f}(x-1)=$ 1.
A. x^{2}.
B. $x^{2}-1$.
C. $x^{2}+2 x-1$.
D. $x^{2}+2 x-3$.
E. $\quad x^{2}+4 x-1$.

94 If $y=\frac{2 x-1}{x+2}$, then $x=$
2.
A. $\frac{1+3 y}{2}$.
B. $\frac{1+2 y}{2+y}$.
C. $\frac{1+2 y}{2-y}$.
D. $\frac{1-2 y}{2+y}$.
E. $\frac{1-2 y}{2-y}$.

94 The L.C.M. of $(x-1)^{2}, x^{2}-1$ and $x^{3}-$ 3. is
A. $x-1$.
B. $(x-1)^{4}(x+1)\left(x^{2}+x+1\right)$.
C. $(x-1)^{2}(x+1)\left(x^{2}+x+1\right)$.
D. $(x-1)^{2}(x+1)\left(x^{2}-x+1\right)$.
E. $(x-1)(x+1)\left(x^{2}+x+1\right)$.
94. If $a=\sqrt{3}+\sqrt{2}$, then $a-\frac{1}{a}=$
4.
A. 0 .
B. $2 \sqrt{2}$.
C. $2 \sqrt{3}$.
D. $\sqrt{3}-\sqrt{2}$
E. $\frac{2 \sqrt{3}}{3}+\frac{\sqrt{2}}{2}$.

94
5.

In the figure, (x, y) is a point in the shaded region (including the boundary) and x, y are integers. Find the greatest value of $3 x+y$.
A. 7
B. 8
C. 9.2
D. 10
E. 10.5

94 If $x(x+1)<5(x+1)$, then
6.
A. $x<5$
B. $x<-5$ or $x>1$.
C. $x<-5$ or $x>1$.
D. $-5<x<1$.
E. $-1<x<5$.

94 Which of the following is/are an 7. identity/identities?
I. $(x+2)(x-2)=x^{2}-4$
II. $(x+2)(x-2)=0$
III. $(x+2)^{3}=x^{3}+8$
A. I only
B. II only
C. III only
D. I and II only
E. II and III only
94. If $\alpha \neq \beta$ and $\left\{\begin{array}{l}3 \alpha^{2}-h \alpha-b=0 \\ 3 \beta^{2}-h \beta-b=0\end{array}\right.$, then $\alpha+\beta=$
A. $-\frac{b}{3}$.
B. $\frac{b}{3}$.
C. h.
D. $-\frac{h}{3}$.
E. $\frac{h}{3}$.

94 Mr. Chan bought a car for \$ 143900.
9. If the value of the car goes down by 10% each year, find its value at the end of the third year. (Give your answer correct to the nearest hundred dollars.)
A. $\$ 94400$
B. $\$ 100700$
C. $\$ 104900$
D. $\$ 115100$
E. $\$ 116600$

94 A wholesaler sells an article to a
10. retailer at a profit of 20%. The retailer sells it to a customer for \$ 3600 at a profit of $\$ 720$. Find the original cost of the article to the wholesaler.
A. $\$ 2304$
B. $\$ 2400$
C. $\$ 2880$

94
13.

94
12.

If the sum to infinity of a G.P. is $\frac{81}{4}$ and its second term is -9 , the common ratio is
A. $-\frac{1}{3}$.
B. $\frac{1}{3}$.
C. $-\frac{4}{3}$.
D. $\frac{4}{3}$.
E. $-\frac{4}{9}$.

In the figure, the paper cup in the form of a circular cone contains 10 ml of water. How many ml of water must be added to fill up the paper cup?
A. 20
B. 80
C. 90
D. 260
E. 270

94 The bearing of A from B is 075°. What
11 . is the bearing of B from A ?
A. 015°
B. 075°
C. 105°
D. 195°
E. 255°

94
14.

In the figure, $A B C D$ is a rectangular field of length p metres and width q meters. The path around the field is of width 2 metres. Find the area of the path.
A. $(4 p+4 q) \mathrm{m}^{2}$
B. $(2 p+2 q+4) \mathrm{m}^{2}$
C. $(2 p+2 q+16) \mathrm{m}^{2}$
D. $(4 p+4 q+16) \mathrm{m}^{2}$
E. $(p q+4 p+4 q+16) \mathrm{m}^{2}$

94
15.

In the figure, $O A C B$ is a sector of radius r. If $\angle A O B=\frac{\pi}{3}$, find the area of the shaded part.
A. $\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right) r^{2}$
B. $\left(\frac{\pi}{6}-\frac{1}{4}\right) r^{2}$
C. $\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) r^{2}$
D. $\left(\frac{\pi}{3}-\frac{1}{2}\right) r^{2}$
E. $\frac{\pi}{3} r-\frac{\sqrt{3}}{4} r^{2}$
16. $\frac{\cos \theta}{\sin \theta+1}-\frac{\cos \theta}{\sin \theta-1}=$
A. $\frac{2}{\cos \theta}$
B. $-\frac{2}{\cos \theta}$
C. 0
D. $2 \tan \theta$
E. $-2 \tan \theta$

94 Which of the following figures shows
17. the graph of $y=1+\sin x$
A.

B.

C.

D.

E.

$\begin{aligned} & \text { 94. } \\ & \text { 18. }\end{aligned} \frac{\sin \left(180^{\circ}+\theta\right)}{\cos \left(90^{\circ}-\theta\right)}=$
A. $\tan \theta$
B. $-\tan \theta$
C. $\frac{1}{\tan \theta}$
D. 1
E. -1

94
19.

In the figure, $A B C D$ is a cyclic quadrilateral with $A B=5, B C=2$ and $\angle A D C=120^{\circ}$. Find $A C$
A. $\sqrt{19}$
B. $\sqrt{21}$
C. $\sqrt{6}$
D. $\sqrt{34}$
E. $\sqrt{39}$

94 20.

In the figure, $P C$ is a vertical pole standing on the horizontal plane $A B C$. If $\angle A B C=90^{\circ}, \angle B A C=30^{\circ}, A C=6$ and $P C=5$, find $\tan \theta$.
A. $\frac{3}{5}$
B. $\frac{5}{6}$
C. $\frac{5}{3}$
D. $\frac{3 \sqrt{3}}{5}$
E. $\frac{5 \sqrt{3}}{9}$

94
21.

In the figure, O is the centre of the circle. If $A C=3$ and $\angle B A C=\frac{\pi}{6}$, find the diameter $A B$.
A. $\frac{3}{2}$
B. 6
C. $\frac{3 \sqrt{3}}{2}$
D. $2 \sqrt{3}$
E. $3 \sqrt{3}$

94
22.

In the figure, $P A$ is tangent to the circle at $A, \angle C A P=28^{\circ}$ and $B A=B C$. Find x.
A. 28°
B. 48°
C. 56°
D. 62°
E. $\quad 76^{\circ}$

94
23.

In the figure, O is the centre of the inscribed circle of $\triangle A B C$. If $\angle O A C=$ 30° and $\angle O C A=25^{\circ}$, find $\angle A B C$.
A. 50°
B. 55°
C. 60°
D. 62.5°
E. 70°

94
24.

In the figure, $A B=A D$ and $B C=C D$. If $\angle B A D=80^{\circ}$ and $\angle A D C=65^{\circ}$, then $\angle B C D=$
A. $\quad 100^{\circ}$.
B. 130°.
C. 145°.
D. 150°.
E. 160°.

94
25.

In the figure, x, y and z are the exterior angles of $\triangle A B C$. if $x: y: z=4: 5: 6$, then $\angle B A C=$
A. 48°.
B. 84°.
C. $\quad 96^{\circ}$.
D. 120°.
E. 132°.

94 The points $A(4,-1), B(-2,3)$ and
26. $\quad C(x, 5)$ lie on a straight line. Find x.
A. -5
B. -4
C. 0
D. 2
E. 5

94
27.

In the figure, the shaded part is bounded by the axes, the line $x=3$ and $x+y=5$. Find the area.
A. 10.5
B. 12
C. 15
D. 19.5
E. 21
$94 A B$ is a diameter of the circle
28. $x^{2}+y^{2}-2 x-2 y-18=0$. If A is $(3,5)$, then B is
A. $(2,3)$.
B. $(1,-1)$.
C. $(-1,-3)$.
D. $(-5,-7)$.
E. $(-7,-9)$.

94 The equations of two circles are
29. $x^{2}+y^{2}-4 x-6 y=0$,
$x^{2}+y^{2}+4 x+6 y=0$,
Which of the following is/are true?
I. The two circles have the same centre.
II. The two circles have equal radii.
III. The two circles pass through the origin.
A. I only
B. II only
C. III only
D. I and III only
E. II and III only

94
30.

In the figure, the pie chart shows the monthly expenditure of a family. If the family spends $\$ 4800$ monthly on rent, what is the monthly expenditure on entertainment?
A. $\$ 240$
B. $\$ 600$
C. $\$ 720$
D. $\$ 1800$
E. $\$ 12000$

94 A box contains 5 eggs, 2 of which are
31. rotten. If 2 eggs are chosen at random, find the probability that exactly one of them is rotten.
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{3}{10}$
D. $\frac{6}{25}$
E. $\frac{12}{25}$

94 The mean, standard deviation and
32. interquartile range of n numbers are m, s and q respectively. If 3 is added to each of the n numbers, what will be their new mean, standard deviation and interquartile range?

Standard

Deviation

Interquartil

 e RangeA. m
s
$s+3$
$q+3$
C. $m+3$
s
q
D. $m+$
E. $m+3$
$s+3$
$q+3$
$s+3$
$q+3$
$94\left(3^{x}\right)^{2}=$
33.
A. $3^{\left(x^{2}\right)}$
B. 3^{x+2}
C. $3^{2 x}$
D. 6^{x}
E. $\quad 9^{2 x}$

94 If $\log 2=a$ and $\log 9=b$, then $\log 12=$ 34.
A. $2 a+\frac{b}{3}$.
B. $2 a+\frac{b}{2}$.
C. $\frac{2}{3} a+\frac{2}{3} b$.
D. $a^{2}+b^{\frac{1}{2}}$.
E. $a^{2} b^{\frac{1}{2}}$

94 Factorize $a^{2}-2 a b+b^{2}-a+b$.
35.
A. $(a-b)(a-b-1)$
B. $(a-b)(a-b+1)$
C. $(a-b)(a+b-1)$
D. $(a+b)(a-b-1)$
E. $(a-b-1)^{2}$
36. $\frac{\frac{2}{x}-\frac{1}{y}}{\frac{4 y}{x}-\frac{x}{y}}=$
A. $2 y-x$
B. $2 y+x$
C. $\frac{1}{2 y-x}$
D. $\frac{1}{2 y+x}$
E. $\frac{1}{4 y-x}$
$94 \quad P(x)$ is a polynomial. When $P(x)$ is
37. divided by $(5 x-2)$, the remainder is R . If $P(x)$ is divided by $(2-5 x)$, then the remainder is
A. $\quad R$.
B. $-R$.
C. $\frac{2}{5} R$.
D. $\frac{2}{5}$.
E. $-\frac{2}{5}$.

94
38.

In the figure, the line $y=m x+k$ cuts the curve $y=x^{2}+b x+c$ at $x=\alpha$ and $x=\beta$. Find the value of $\alpha \beta$
A. $-b$
B. c
C. $m-b$
D. $k-c$
E. $c-k$

94 If $x=3, y=2$ satisfy the simultaneous
39. equations $\left\{\begin{array}{l}a x+b y=2 \\ b x-a y=3\end{array}\right.$, find the values of a and b
A. $\quad a=0, b=1$
B. $\quad a=0, b=-1$
C. $a=\frac{5}{6}, b=-\frac{1}{4}$
D.

$$
a=-\frac{1}{13}, b=\frac{37}{39}
$$

E. $a=-\frac{12}{13}, b=\frac{5}{13}$

94 From the table, which of the following
40. intervals must contain a root of
$\mathrm{f}(x)-x=0$

x	$\mathrm{f}(x)$
-2	1.2
-1	0.8
0	0.7
1	0.2
2	-0.1
3	0.8

A. $-2<x<-1$
B. $-1<x<0$
C. $0<x<1$
D. $1<x<2$
E. $2<x<3$

94 If the product of the first n terms of the
41. sequence $10,10^{2}, 10^{3}, \ldots, 10^{n}, \ldots$
exceeds 10^{55}, find the minimum value of n.
A. 9
B. 10
C. 11
D. 12
E. 56

94 If $a: b=2: 3, a: c=3: 4$ and
42. $a: d=4: 5$, then $b: c: d=$
A. 2:3:4.
B. $3: 4: 5$.
C. $3: 6: 10$.
D. $18: 16: 15$.
E. $40: 45: 48$.

94 Let x vary inversely as \sqrt{y}. If y is increased by 69%, then x will be
A. increased by 23.1% (3 sig. fig.).
B. increased by 30%.
C. decreased by 23.1% (3 sig. fig.).
D. decreased by 30%.
E. decreased by 76.9% (3 sig. fig.).

In the figure, $C D E F$ is a sector of a circle which touched $A B$ at E. If $A B=$ 25 and $B C=15$, find the radius of the sector.
A. 9
B. 10
C. 11.25
D. 12
E. 12.5

$$
\text { E. } 12.5
$$

94
44.

$$
5 \cdot 12.0
$$

In the figure, $A D: D B=1: 2, A E: E C$ $=3: 2$. Area of $\triangle B D E:$ Area of $\triangle A B C$ =
A. $1: 3$
B. $2: 5$
C. $3: 4$
D. $4: 25$
E. $36: 65$

94
46.

In the figure, area of $\triangle A B C$: area of square $B C D E=2: 1$. Find $P Q: B C$.
A. $1: 2$
B. $1: 3$
C. $1: 4$
D. $2: 3$
E. $3: 4$

94 For $0^{\circ} \leq x \leq 360^{\circ}$, how many roots does
47. the equation $\sin x(\cos x+2)=0$ have?
A. 0
B. 1
C. 2
D. 3
E. 4

94 The largest value of $(3 \cos 2 \theta-1)^{2}+1$
48. is
A. 2 .
B. 5 .
C. 17 .
D. 26 .
E. 50 .

94
49.

In the figure,
$\sin A: \sin B: \sin C=4: 5: 6$. If $A B=$ 8 , find $A C$.
A. $5 \frac{1}{3}$
B. $6 \frac{2}{3}$
C. $9 \frac{3}{5}$
D. 10
E. 12

In the figure, $A B=p, \angle \mathrm{ACB}=\theta$. Find $C D$
A. $p \sin \theta$
B. $p \cos \theta$
C. $\frac{p \sin \theta}{\cos ^{2} \theta}$
D. $\frac{p \sin ^{2} \theta}{\cos \theta}$
E. $\frac{p \cos ^{2} \theta}{\sin \theta}$

94
51.

In the figure, $A B C D$ is a semi-circle, $C D E$ and $B A E$ are straight lines. If $\angle C B D=30^{\circ}$ and $\angle D E A=22^{\circ}$, find x.
A. 38°
B. 41°
C. 44°
D. 52°
E. 60°

94
52.

In the figure, $O A B C D$ is a sector of a circle. If arc $A B=\operatorname{arc} B C=\operatorname{arc} C D$, then $x=$
A. 105°.
B. 120°.
C. 135°.
D. 144°.
E. $\quad 150^{\circ}$.

94
53.

In the figure, $A B / / D C$ and $\angle D A B=$ $\angle D B C$. Which of the following is/are true?
I. $\frac{A B}{B D}=\frac{B D}{D C}$
II. $\frac{A B}{B D}=\frac{A D}{B C}$
III. $\frac{A D}{B D}=\frac{B D}{C D}$
A. I only

94
B. II only
C. III only
D. I and II only
E. II and III only
54.

In the figure, $A B C D$ is a trapezium with $A B / / D C, \angle A B C=90^{\circ}$ and $M N$ is the perpendicular bisector of $A D$. If $A B=$ $9, B N=2$ and $N C=6$, find $C D$.
A. $4 \frac{1}{2}$
B. $6 \frac{3}{4}$
C. 7
D. $\sqrt{41}$
E. $\sqrt{113}$

