HKCEE 1993

Mathematics II

93 If $\mathrm{f}(x)=10^{2 x}$, then $\mathrm{f}(4 y)=$
1.
A. $10^{4 y}$.
B. $10^{2+4 y}$.
C. $10^{8 y}$.
D. 40^{y}.
E. $40^{2 y}$.

93 If $s=\frac{n}{2}[2 a+(n-1) d]$, then $d=$
A. $\frac{2(s-a n)}{n(n-1)}$.
B. $\frac{2(s-a n)}{(n-1)}$.
C. $\frac{s}{n(n-1)}$.
D. $\frac{a s-n}{a(n-1)}$.
E. $\frac{4(s-a n)}{n(n-1)}$.

93 Simplify $\left(x^{2}-\sqrt{3} x+1\right)\left(x^{2}+\sqrt{3} x+1\right)$.
3.
A. $x^{4}+1$
B. $x^{4}-x^{2}+1$
C. $x^{4}+x^{2}+1$
D. $x^{4}-3 x^{2}-2 \sqrt{3} x-1$
E. $x^{4}+3 x^{3}-2 \sqrt{3} x^{2}+\sqrt{3} x-1$
4. $\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}$.
A. $\frac{1}{\sqrt{a}-\sqrt{b}}$
B. $\frac{a+2 \sqrt{a b}-b}{a-b}$

93
6.
C. $\frac{\sqrt{b}+\sqrt{a}}{2 \sqrt{a}}$
D. $\frac{b+2 \sqrt{a b}-a}{a-b}$
E. $\frac{a+b}{a-b}$

93 If $3 x^{2}+a x-5 \equiv(b x-1)(2-x)-3$,
5. then
A. $a=-5, b=-3$.
B. $a=-5, b=3$.
C. $a=-3, b=-5$.
D. $a=5, b=-3$.
E. $a=3, b=5$.

Find the greatest value of $3 x+2 y$ if (x, y) is a point lying in the region $O A B C D$ (including the boundary).
A. 15
B. 13
C. 12
D. 9
E. 8

93
7.

The diagram shows the graphs of $y=a x^{2}+b x$ and $y=c x+d$. The solutions of the equation
$a x^{2}+b x=c x+d$ are
A. $-1,1$
B. $-1,2$
C. 0,1
D. 0,3
E. 1,3

93 If $\log (p+q)=\log p+\log q$, then 8.
A. $p=q=1$.
B. $p=\frac{q}{q-1}$.
C. $p=\frac{q}{q+1}$.
D.

$$
p=\frac{q+1}{q} .
$$

E. $p=\frac{q-1}{q}$.

93 The expression $x^{2}-2 x+k$ is divisible
9 . by $(x+1)$. Find the remainder when it is divided by $(x+3)$.
A. 1
B. 4
C. 12
D. 16
E. 18
A. 13 .
B. 26 .
C. 33 .
D. 39 .
E. 65 .

93 Find the H.C.F. and L.C.M. of $a b^{2} c$ and 11. $a b c^{3}$
H.C.F.
A. a
B. $a b c$
C. $a b c$
D. $a b^{2} c^{3}$
E. $a^{2} b^{3} c^{4}$
L.C.M.
$a b c$
$a b c$

93 If α and β are the roots of the quadratic
12. equation $x^{2}-3 x-1=0$, find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$.
A. -3
B. -1
C. $-\frac{1}{3}$
D. $\frac{2}{3}$
E. 3

93 If the simultaneous equations
13. $\left\{\begin{array}{c}y=x^{2}-k \\ y=x\end{array}\right.$ have only one solution, find k.
A. -1
B. $-\frac{1}{4}$
C. -4
D. $\frac{1}{4}$
E. 1

93 If 3, $a, b, c, 23$ are in A.P., then
10. $a+b+c=$

93
14.

The price of a cylindrical cake of radius r and height h varies directly as the volume. If $r=5 \mathrm{~cm}$ and $h=4 \mathrm{~cm}$, the price is $\$ 30$. Find the price when $r=4$ cm and $h=6 \mathrm{~cm}$.
A. $\$ 25$
B. $\$ 28.80$
C. $\$ 31.50$
D. $\$ 36$
E. $\$ 54$

93
15.

Find the perimeter of the sector in the figure.
A. $\quad 2.25 \mathrm{~cm}$
B. 3 cm
C. $\left(\frac{\pi}{60}+3\right) \mathrm{cm}$
D. 4.5 cm
E. 6 cm

93 16.

In the figure, the base of the conical vessel is inscribed in the bottom of the cubical box. If the box and the conical vessel have the same capacity, find h :
r.
A. $24: \pi$
B. $3: 1$
C. $6: \pi$
D. $3: \pi$
E. $8: 3 \pi$

The figure shows a solid consisting of a cylinder of height h and a hemisphere of radius r. The area of the curved surface of the cylinder is twice that of the hemisphere. Find the ratio volume of cylinder : volume of hemisphere
A. $1: 3$
B. $2: 3$
C. $3: 4$
D. $3: 2$
E. $3: 1$

93 A merchant marks his goods 25%
18. above the cost. He allows 10% discount on the marked price for a cash sale. Find the percentage profit the merchant makes for a cash sale.
A. 12.5%
B. 15%
C. 22.5%
D. 35%
E. 37.5%
19. $\frac{\cos \theta}{1-\sin ^{2} \theta} \cdot \frac{1-\cos ^{2} \theta}{\sin \theta}=$
A. $\sin \theta$
B. $\cos \theta$
C. $\tan \theta$
D. $\frac{1}{\sin \theta}$
E. $\frac{1}{\cos \theta}$
$93 \cos ^{4} \theta-\sin ^{4} \theta+2 \sin ^{2} \theta=$
20.
A. 0
B. 1
C. $\left(1-\sin ^{2} \theta\right)^{2}$
D. $\left(1-\cos ^{2} \theta\right)^{2}$
E. $\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{2}$

93
21.

C. $\sqrt{89}$
D. $\sqrt{41}$
E. $\sqrt{25}$

93 The largest value of $3 \sin ^{2} \theta+2 \cos ^{2} \theta-$ 22. 1 is
A. 1 .
B. $\frac{3}{2}$
C. 2 .
D. 3 .
E. 4 .

93
23.

In the figure, $A B=B C, B P=C P$ and $B P \perp C P$. Find $\tan \theta$.
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{3}}$
E. $\frac{\sqrt{3}}{2}$

In the figure, $\cos A=-\frac{4}{5}$. Find a.
A. $\sqrt{153}$
B. $\sqrt{137}$

93
24.

In the figure, points A, B, C and D are concyclic. Find x.
A. 20°
B. 22.5°
C. 25°
D. 27.5°
E. 30°

In the figure, $B A / / D E$ and $A C=A D$. Find θ.
A. 34°
B. 54°
C. 70°
D. 72°
E. 76°

93
26.

In the figure, $A B$ is a diameter. Find $\angle A D C$.
A. 100°
B. 110°
C. 120°
D. 135°
E. 140°

93 If the points $(1,1),(3,2)$ and $(7, k)$ are
27. on the same straight line, then $k=$
A. 3 .
B. 4 .
C. 6 .
D. 7 .
E. 10 .
$93 A(0,0), B(5,0)$ and $C(2,6)$ are the
28. vertices of a triangle. $P(9,5), Q(6,6)$ and $R(2,-9)$ are three points. Which of the following triangles has/have area(s) greater than the area of $\triangle A B C$?
I. $\triangle A B P$
II. $\triangle A B Q$
III. $\triangle A B R$
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

93 A circle of radius 1 touches both the
29. positive x-axis and the positive y-axis. Which of the following is/are true?
I. Its centre is in the first quadrant.
II. Its centre lies on the line $x-y=0$.
III. Its centre lies on the line $x+y=1$.
A. I only
B. II only
C. III only
D. I and II only
E. I and III only

93 What is the area of the circle
30. $x^{2}+y^{2}-10 x+6 y-2=0$?
A. 32π
B. 34π
C. 36π
D. 134π
E. 138π

93 Two fair dice are thrown. What is the 31. probability of getting a total of 5 or 10 ?
A. $\frac{1}{9}$
B. $\frac{5}{36}$
C. $\frac{1}{6}$
D. $\frac{7}{36}$
E. $\frac{2}{9}$

93 A group of n numbers has mean m. If 32. the numbers 1,2 and 6 are removed from the group, the mean of the remaining $n-3$ numbers remains unchanged. Find m.
A. 1
B. 2
C. 3
D. 6
E. $n-3$

93
33.

The figure shows the frequency polygons of two symmetric distributions A and B with the same mean. Which of the following is/are true?
I. Interquartile range of $A<$ Interquartile range of B
II. Standard deviation of $A>$

Standard deviation of B
III. Mode of $A>$ Mode of B
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

93 If $9^{x+2}=36$, then $3^{x}=$
34.
A. $\frac{2}{3}$.
B. $\frac{4}{3}$.
C. 2 .
D. $\sqrt{6}$.
E. 9 .

93 If $a: b=2: 3$ and $b: c=5: 3$, then
35. $\frac{a+b+c}{a-b+c}=$
A. -2 .
B. $\frac{5}{2}$.
C. 4 .
D. $\frac{17}{2}$.
E. 31 .

93
36.

x	Sign of $\mathrm{f}(x)$
3.56	+
3.58	-
3.57	+
3.575	+

From the table, a root of the equation $\mathrm{f}(x)=0$ is
A. 3.57 (correct to 3 sig. fig.).
B. 3.575 (correct to 4 sig. fig.).
C. 3.5775 (correct to 5 sig. fig.).
D. 3.5725 (correct to 4 sig. fig.).
E. 3.58 (correct to 3 sig. fig.).

93 Given that the positive numbers p, q, r, 37. s are in G.P., which of the following must be true?
I. $k p, k q, k r, k s$ are in G.P., where k is a non-zero constant.
II. $a^{p}, a^{q}, a^{r}, a^{s}$ are in G.P., where a is a positive constant.
III. $\log p, \log q, \log r, \log s$ are in A.P.
A. I only
B. II only
C. I and II only
D. I and III only
E. I, II and III only

93
38.

In the figure, the rectangle has perimeter 16 cm and area $15 \mathrm{~cm}^{2}$. Find the length of its diagonal $A C$.
A. $\sqrt{32} \mathrm{~cm}$
B. $\sqrt{34} \mathrm{~cm}$
C. 7 cm
D. $\sqrt{226} \mathrm{~cm}$
E. $\sqrt{241} \mathrm{~cm}$

93 In factorizing the expression
39. $a^{4}+a^{2} b^{2}+b^{4}$, we find that
A. $\left(\underline{a}^{2}-b^{2}\right)$ is a factor.
B. $\left(\underline{a}^{2}+b^{2}\right)$ is a factor.
C. $\left(a^{2}-a b-b^{2}\right)$ is a factor.
D. $\left(a^{2}-a b+b^{2}\right)$ is a factor.
E. it cannot be factorized.

93 If the solution of the inequality
40. $x^{2}-a x+6 \leq 0$ is $c \leq x \leq 3$, then
A. $\quad a=5, c=2$.
B. $a=-5, c=2$.
C. $a=5, c=-2$.
D. $\quad a=1, c=-2$.
E. $\quad a=-1, c=2$.

93
41.

In the figure, $A B C D$ is a square and $A B E$ is an equilateral triangle.
$\frac{\text { Area of } A B E}{\text { Area of } A B C D}=$
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{\sqrt{3}}{8}$
D. $\frac{\sqrt{3}}{4}$
E. $\frac{\sqrt{3}}{2}$

93
42.

In the figure, the radii of the sectors $O P Q$ and $O R S$ are 5 cm and 3 cm respectively. $\frac{\text { Area of shaded region }}{\text { Area of sector } O P Q}=$
A. $\frac{4}{25}$.
B. $\frac{2}{5}$.
C. $\frac{9}{25}$.
D. $\frac{16}{25}$
E. $\frac{21}{25}$.

93 Which of the following gives the
43. compound interest on \$ 10000 at 6% p.a. for one year, compounded monthly?
A.

$$
\$ 10000 \times \frac{0.06}{12} \times 12
$$

B. $\$ 10000\left(1.06^{12}-1\right)$
C. $\$ 10000\left(1+\frac{0.06}{12}\right)^{12}$
D. $\$ 10000\left[\left(1+\frac{0.06}{12}\right)^{12}-1\right]$
E. $\$ 10000\left[\left(1+\frac{0.6}{12}\right)^{12}-1\right]$

93
44.

Originally $\frac{2}{3}$ of the students in a class failed in an examination. After taking a re-examination, 40% of the failed students passed. Find the total pass percentage of the class.
A. $26 \frac{2}{3} \%$
B. $33 \frac{1}{3} \%$
C. 40%
D. 60%
E. $73 \frac{1}{3} \%$

93 Solve $\tan ^{4} \theta+2 \tan ^{2} \theta-3=0$ for
45. $0^{\circ} \leq \theta<360^{\circ}$.
A. $45^{\circ}, 135^{\circ}$ only
B. $45^{\circ}, 225^{\circ}$ only
C. $45^{\circ}, 60^{\circ}, 225^{\circ}, 240^{\circ}$
D. $45^{\circ}, 120^{\circ}, 225^{\circ}, 300^{\circ}$
E. $45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$

93
46.

The figure shows the graph of the function
A. $y=\sin \left(350^{\circ}-x\right)$.
B. $y=\sin \left(x+10^{\circ}\right)$.
C. $y=\cos \left(x+10^{\circ}\right)$.
D. $y=\sin \left(x-10^{\circ}\right)$.
E. $y=\cos \left(x-10^{\circ}\right)$.

93
47.

In the figure, $A B C$ is an equilateral triangle and the radii of the three circles are each equal to 1 . Find the perimeter of the triangle.
A. 12
B. $3\left(1+\tan 30^{\circ}\right)$
C. $6\left(1+\tan 30^{\circ}\right)$
D. $3\left(1+\frac{1}{\tan 30^{\circ}}\right)$
E. $6\left(1+\frac{1}{\tan 30^{\circ}}\right)$

93
48.

In the figure, $A B C D E F G H$ is a cuboid. The diagonal $A H$ makes an angle θ with the base $A B C D$. Find $\tan \theta$.
A. $\frac{3}{5}$
B. $\frac{3}{12}$
C. $\frac{3}{13}$
D. $\frac{3}{\sqrt{178}}$
E. $\frac{\sqrt{153}}{5}$

93
49.

In the figure, if arc $B C: \operatorname{arc} C A: \operatorname{arc} A B$ $=1: 2: 3$, which of the following is/are true?
I. $\angle A: \angle B: \angle C=1: 2: 3$
II. $\quad a: b: c=1: 2: 3$
III. $\sin A: \sin B: \sin C=1: 2: 3$
A. I only
B. II only
C. III only
D. I and II only
E. I, II and III only

In the figure, $T P$ and $T Q$ are tangent to the circle at P and Q respectively. if M is a point on the minor arc $P Q$ and $\angle P M Q=\theta$, then $\angle P T Q=$
A. $\frac{\theta}{2}$.
B. $\quad \theta-90^{\circ}$.
C. $180^{\circ}-\theta$.
D. $180^{\circ}-2 \theta$.
E. $2 \theta-180^{\circ}$.

In the figure, O is the centre of the circle. AB touches the circle at N . Which of the following is/are correct?
I. $\quad M, N, K, O$ are concyclic.
II. $\triangle H N B \sim \triangle N K B$
III. $\angle O A N=\angle N O B$
A. I only
B. II only
C. III only
D. I and II only
E. I, II and III only

93
52.

In the figure $A B C D$ and $E F G H$ are two squares and $A C H$ is an equilateral triangle. Find $A B: E F$.
A. $1: 2$
B. $1: 3$
C. $1: \sqrt{2}$
D. $1: \sqrt{3}$
E. $\sqrt{2}: \sqrt{3}$

93
53.

In the figure, a rectangular piece of paper $A B C D$ is folded along $E F$ so that C and A coincide. If $A B=12 \mathrm{~cm}, B C=$ 16 cm , find $B E$.
A. $\quad 3.5 \mathrm{~cm}$
B. $\quad 4.5 \mathrm{~cm}$
C. 5 cm
D. 8 cm
E. $\quad 12.5 \mathrm{~cm}$

93
54.

In the figure, the three circles touch one another. $X Y$ is their common tangent. The two larger circles are equal. If the radius of the smaller circle is 4 cm , find the radii of the larger circles.
A. 8 cm
B. 10 cm
C. 12 cm
D. 14 cm
E. 16 cm

