## HKCEE 1992

Mathematics II

1. $\frac{1}{a}+\frac{1}{b}=$
A. $\frac{a+b}{a b}$
B. $\frac{a b}{a+b}$
C. $\frac{1}{a b}$
D. $\frac{2}{a+b}$
E. $\frac{1}{a+b}$
2. If $a=1-\frac{1}{1-b}$, then $b=$
A. $1-\frac{1}{1-a}$.
B. $1-\frac{1}{1+a}$.
C. $1+\frac{1}{1-a}$.
D. $1+\frac{1}{1+a}$.
E. $-1+\frac{1}{1+a}$.

92 For what value(s) of $x$ does the equality
3. $\frac{(x+1)(x-2)}{x-2}=x+1$ hold?
A. -1 only
B. 2 only
C. Any value
D. Any value except -1
E. Any value except 2
92. $\frac{\sqrt{5}+1}{\sqrt{5}-1}-\frac{\sqrt{5}-1}{\sqrt{5}+1}=$
A. 0
B. $\frac{1}{2}$
C. 3
D. $\sqrt{5}$
E. $\frac{1}{2}+\sqrt{5}$

92
5. If $\log _{10} b=1+\frac{1}{2} \log _{10} a$, then $b=$
A. $10 \sqrt{a}$.
B. $10+\sqrt{a}$.
C. $5 a$.
D. $\frac{a}{2}$.
E. $1+\frac{a}{2}$.

92 Which of the following is a factor of
6. $4(a+b)^{2}-9(a-b)^{2}$ ?
A. $5 b-a$
B. $5 b+a$
C. $-a-b$
D. $13 b-5 a$
E. $13 a-5 b$

If $\frac{a}{b}=\frac{c}{d}=k$ and $a, b, c, d$ are positive, then which of the following must be true?
A. $\frac{a+c}{b+d}=k$
B. $a b=c d=k$
C. $a c=b d=k$
D. $a=c=k$
E. $\frac{a c}{b d}=k$

92
Simplify $\frac{\overbrace{n \times n \times \cdots \times n}}{n \text { times }}$.
A. $n^{n-2}$
B. $n^{\frac{n}{2}}$
C. $n-2$
D. $\frac{n}{2}$
E. 1

92 If a and b are greater than 1 , which of 9. the following statements is/are true?
I. $\sqrt{a+b}=\sqrt{a}+\sqrt{b}$
II. $\quad\left(a^{-1}+b^{-1}\right)^{-1}=a+b$
III. $a^{2} b^{3}=(a b)^{6}$
A. I only
B. II only
C. III only
D. I and II only
E. None of them

92 If $a: b=2: 3, a: c=3: 4$ and $b: d=$
10. $5: 2$, find $c: d$.
A. $1: 5$
B. $16: 45$
C. $10: 3$
D. $20: 9$
E. $5: 1$

92 Suppose $x$ varies directly as $y^{2}$ and 11. inversely as $z$. Find the percentage increase of $x$ when $y$ is increased by $20 \%$ and $z$ is decreased by $20 \%$.
A. $15.2 \%$
B. $20 \%$
C. $50 \%$
D. $72.8 \%$
E. $80 \%$

92 A sum of \$ 10000 is deposited at $4 \%$
12. p.a., compounded yearly. Find the interest earned in the second year.
A. $\$ 16$
B. $\$ 400$
C. $\$ 416$
D. $\$ 800$
E. $\$ 816$

92
13.


The figure shows a solid platform with steps on one side and a slope on the other. Find its volume.
A. $0.75 \mathrm{~m}^{3}$
B. $0.84 \mathrm{~m}^{3}$
C. $\quad 0.858 \mathrm{~m}^{3}$
D. $\quad 1.008 \mathrm{~m}^{3}$
E. $\quad 1.608 \mathrm{~m}^{3}$

92
15.


Find the ratio of the volume of the tetrahedron $A C H D$ to the volume of the cube $A B C D E F G H$ in the figure.
A. $1: 8$
B. $1: 6$
C. $1: 4$
D. $1: 3$
E. $1: 2$


In the figure, the equilateral triangle $A C E$ of side 4 cm is inscribed in the circle. Find the area of the inscribed regular hexagon $A B C D E F$.
A. $8 \sqrt{3} \mathrm{~cm}^{2}$
B. $8 \sqrt{2} \mathrm{~cm}^{2}$
C. $4 \sqrt{3} \mathrm{~cm}^{2}$
D. $4 \sqrt{2} \mathrm{~cm}^{2}$
E. $16 \mathrm{~cm}^{2}$

92
17.


In the figure, a cone of height $3 h$ is cut by a plane parallel to its base into a smaller cone of height $h$ and a frustum. Find the ratio of the volume of the smaller cone to the volume of the frustum.
A. $1: 27$
B. $1: 26$
C. $1: 9$
D. $1: 8$
E. $1: 7$

92 The greatest value of $1-2 \sin \theta$ is 18.
A. 5 .
B. 3 .
C. 1 .
D. 0 .
E. -1 .


In the figure, find $\cos \theta$.
A. $-\frac{1}{4}$
B. $\frac{11}{16}$
C. $\frac{3}{4}$
D. $\frac{7}{8}$
E. $\frac{\sqrt{77}}{9}$

92 In which two quadrants will the
20. solution(s) of $\sin \theta \cos \theta<0$ lie?
A. In quadrants I and II only
B. In quadrants I and III only
C. In quadrants II and III only
D. In quadrants II and IV only
E. In quadrants III and IV only

92 If $A+B+C=180^{\circ}$, then
21. $1+\cos A \cos (B+C)=$
A. 0 .
B. $\sin ^{2} A$.
C. $1+\cos ^{2} A$.
D. $\quad 1+\sin A \cos A$.
E. $\quad 1-\sin A \cos A$.

92
22.


The figure shows the graph of the function
A. $\tan (x+\pi)$.
B. $\tan (x-\pi)$.
C. $\pi \tan x$.
D. $\pi+\tan x$.
E. $\pi-\tan x$.

92 Which of the following equations
23. has/have solutions?
I. $2 \cos ^{2} \theta-\sin ^{2} \theta=1$
II. $2 \cos ^{2} \theta-\sin ^{2} \theta=2$
III. $2 \cos ^{2} \theta-\sin ^{2} \theta=1$
A. I only
B. II only
C. III only
D. I and II only
E. II and III only


In the figure, O is the centre of the circle. Find $\theta$.
A. $42^{\circ}$
B. $36^{\circ}$
C. $24^{\circ}$
D. $21^{\circ}$
E. $18^{\circ}$

92
25.


In the figure, $A B C D$ is a square with side 6. If $B E=C E=5$, find $A E$.
A. $\sqrt{61}$
B. 9
C. 10
D. $6 \sqrt{3}$
E. $\sqrt{109}$

92
26.


In the figure, the circle is inscribed in a regular pentagon. $P, Q$ and $R$ are points of contact. Find $\theta$.
A. $30^{\circ}$
B. $32^{\circ}$
C. $35^{\circ}$
D. $36^{\circ}$
E. $45^{\circ}$

92
27.


In the figure, $S T$ is a tangent to the smaller circle. $A B C$ is a straight line. If $\angle T A D=2 x$ and $\angle D P C=3 x$, find $x$.
A. $30^{\circ}$
B. $36^{\circ}$
C. $40^{\circ}$
D. $42^{\circ}$
E. $45^{\circ}$

92 If the two lines $2 x-y+1=0$ and
28. $a x+3 y-1=0$ do not intersect, then $a$ $=$
A. -6 .
B. -2 .
C. 2 .
D. 3 .
E. 6 .

92 If $0<k<h$, which of the following
29. circles intersect(s) the $y$-axis?
I. $(x-h)^{2}+(y-k)^{2}=k^{2}$
II. $(x-h)^{2}+(y-k)^{2}=h^{2}$
III. $(x-h)^{2}+(y-k)^{2}=h^{2}+k^{2}$
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

92 If the line $y=m x+3$ divides the circle
30. $x^{2}+y^{2}-4 x-2 y-5=0$ into two equal parts, find $m$.
A. $-\frac{1}{4}$
B. -1
C. 0
D. $\frac{5}{4}$
E. 2

92 The mid-points of the sides of a
31. triangle are $(3,4),(2,0)$ and $(4,2)$. Which of the following points is a vertex of the triangle?
A. $(3.5,3)$
B. $(3,2)$
C. $(3,1)$
D. $(1.5,2)$
E. $(1,2)$

92 The table shows the mean marks of two
32. classes of students in a

|  | Number of students | Mean mark |
| :---: | :---: | :---: |
| Class $A$ | 38 | 72 |
| Class $B$ | 42 | 54 |

A student in Class A has scored 91 marks. It is found that his score was wrongly recorded as 19 in the calculation of the mean mark for Class A in the above table. Find the correct mean mark of the 80 students in the two classes.
A. 61.65
B. 62.55
C. 63
D. 63.45
E. 63.9

92 Two cards are drawn randomly from
33. five cards $A, B, C, D$ and $E$. Find the probability that card $A$ is drawn while card $C$ is not.
A. $\frac{3}{25}$
B. $\frac{3}{20}$
C. $\frac{4}{25}$
D. $\frac{6}{25}$
E. $\frac{3}{10}$

92 I.
34.

II.

III.


The figure shows the cumulative frequency curves of three distributions. Arrange the three distributions in the order of their standard deviations, from the smallest to the largest.
A. I, II, III
B. I, III, II
C. II, I, III
D. II, III, I
E. III, I, II

92 If the quadratic equation
35. $a x^{2}-2 b x+c=0$ has two equal roots, which of the following is/are true?
I. $\quad a, b, c$ form an arithmetic progression.
II. $a, b, \quad c$ form a geometric progression.
III. Both roots are $\frac{b}{a}$.
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

92 Which of the following intervals must
36. contain a root of $2 x^{3}-x^{2}-x-3=0$ ?
I. $\quad-1<x<1$
II. $\quad 0<x<2$
III. $1<x<3$
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

92 How many integers $x$ satisfy the 37. inequality $6 x^{2}-7 x-20 \leq 0$ ?
A. 0
B. 1
C. 2
D. 3
E. 4

92
38.


From the figure, if $\alpha \leq x \leq \beta$, then
A. $a x^{2}+(b-m) x+(c-k) \leq 0$.
B. $a x^{2}+(b-m) x+(c-k)<0$.
C. $a x^{2}+(b-m) x+(c-k)=0$.
D. $a x^{2}+(b-m) x+(c-k)>0$.
E. $a x^{2}+(b-m) x+(c-k) \geq 0$.

92 Under which of the following
39. conditions must the mean of n consecutive positive integers also be an integer?
A. $n$ is any positive integer
B. $n$ is any positive odd integer
C. $n$ is any positive even integer
D. $n$ is any multiple of 3
E. $n$ is the square of any positive integer

92 The L.C.M. of $P$ and $Q$ is $12 a b^{3} c^{2}$. The
40. L.C.M. of $X, Y$ and $Z$ is $30 a^{2} b^{3} c$. What is the L.C.M. of $P, Q, X, Y$ and $Z$ ?
A. $360 a^{3} b^{6} c^{3}$
B. $60 a^{2} b^{3} c^{2}$
C. $60 a b^{3} c^{2}$
D. $6 a^{2} b^{3} c$
E. $6 a b^{3} c$

92 If a polynomial $\mathrm{f}(x)$ is divisible by $x-$
41. 1, then $\mathrm{f}(x-1)$ is divisible by
A. $x-2$.
B. $x+2$.
C. $x-1$.
D. $x+2$.
E. $x$.

92 Find the (2n)th term of G.P.
$-\frac{1}{2}, 1,-2,4, \ldots$
A. $2^{2 n}$
B. $-2^{2 n}$
C. $-2^{2 n-3}$
D. $2^{2 n-2}$
E. $-2^{2 n-2}$

92 If the price of an orange rises by $\$ 1$,
43. then 5 fewer oranges could be bought for $\$ 100$. Which of the following equations gives the original price $\$ x$ of an orange?
A. $\frac{100}{x+1}=5$
B. $\frac{100}{x+1}-\frac{100}{x}=5$
C. $\frac{100}{x}-\frac{100}{x+1}=5$
D. $\frac{100}{x-1}-\frac{100}{x}=5$
E. $\frac{100}{x}-\frac{100}{x-1}=5$

92 By selling an article at $10 \%$ discount
44. off the marked price, a shop still makes $20 \%$ profit. If the cost price of the article is $\$ 19800$, then the marked price is
A. $\$ 21600$.
B. $\$ 26136$.
C. $\$ 26400$.
D. $\$ 27225$.
E. $\$ 27500$.

92 Coffee $A$ and coffee $B$ are mixed in the
45. ratio $x: y$ by weight. $A$ costs $\$ 50 / \mathrm{kg}$ and $B$ costs $\$ 40 / \mathrm{kg}$. If the cost of $A$ is increased by $10 \%$ which that of $B$ is decreased by $15 \%$, the cost of the mixture per kg remains unchanged. Find $x: y$.
A. $2: 3$
B. $5: 6$
C. $6: 5$
D. $3: 2$
E. $55: 34$

92
46.


In the figure, find $\tan \theta$.
A. $\frac{1}{3}$
B. $\frac{1}{\sqrt{8}}$
C. $\frac{3}{8}$
D. $\sqrt{\frac{2}{7}}$
E. $\frac{1}{\sqrt{2}}$

92
47.


In the figure, if $\theta$ is the angle between the diagonals $A G$ and $B H$ of the cuboid, then
A. $\sin \frac{\theta}{2}=\frac{2}{3}$.
B. $\sin \frac{\theta}{2}=\frac{3}{4}$.
C. $\sin \frac{\theta}{2}=\frac{1}{3}$.
D. $\sin \theta=\frac{2}{3}$
E. $\sin \theta=\frac{3}{4}$

92
48.


In the figure, $O A$ is perpendicular to the plane $A B C$. $O A=A B=A C=2 \mathrm{~cm}$ and $B C=2 \sqrt{2} \mathrm{~cm}$. If $M$ and $N$ are the midpoint of $O B$ and $O C$ respectively, find the area of $\triangle A M N$.
A. $\frac{1}{2} \mathrm{~cm}^{2}$
B. $1 \mathrm{~cm}^{2}$


92
49.

In $\triangle A B C, \angle A=30^{\circ}, c=6$. If it is possible to draw two distinct triangles as shown in the figure, find the range of values of $a$.
A. $0<a<3$
B. $0<a<6$
C. $3<a<6$
D. $a>3$
E. $\quad a>6$

92
50.


In the figure, the two circles touch each other at $C$. The diameter $A B$ of the bigger circle is tangent to the smaller circle at $D$. If $D E$ bisects $\angle A D C$, find $\theta$.
A. $24^{\circ}$
B. $38^{\circ}$
C. $45^{\circ}$
D. $52^{\circ}$
E. $66^{\circ}$


In the figure, $E B$ and $E C$ are the angle bisectors of $\angle A B C$ and $\angle A C D$ respectively. If $\angle A=40^{\circ}$, find $\angle E$.
A. $20^{\circ}$
B. $25^{\circ}$
C. $30^{\circ}$
D. $35^{\circ}$
E. $40^{\circ}$


In the figure, $O$ is the centre of the circle. If the diameter $A O B$ rotates about $O$, which of the following is/are constant?
I. $\theta+\phi$
II. $A C+B D$
III. $A C \times B D$
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

92


In the figure, $A B=16, C D=8, B F=9$, $G D=4, E G=2$. Find $G C$.
A. 4.5
B. 5
C. 6
D. 8
E. 10

92
54.


In the figure, $A B C D$ is a square of side $a$ and $B D E F$ is a rhombus. $C E F$ is a straight line. Find the length of the perpendicular from $B$ to $D E$.
A. $\frac{1}{2} a$
B. $\frac{2 a}{\sqrt{3}}$
C. $\frac{a}{\sqrt{2}}$
D. $\frac{\sqrt{3}}{2} a$
E. $a$

