Form 5

HKCEE 1990

Mathematics II
$90\left(a^{2 n}\right)^{3}=$
1.
A. $a^{6 n}$
B. $a^{8 n}$
C. $a^{2 n^{3}}$
D. $a^{6 n^{3}}$
E. $a^{8 n^{3}}$
2. $\frac{1-\frac{x-y}{x+y}}{1-\frac{x+y}{x-y}}=$
A. $\frac{y-x}{x+y}$
B. $\frac{x-y}{x+y}$
C. $\frac{x}{y}$
D. $x+y$
E. $x-y$

90 If $x=\frac{a b+1}{a-b}$, then $b=$
3.
A. $\frac{a x-1}{a+x}$
B. $\frac{a x-1}{a-x}$
C. $\frac{1-a x}{a+x}$
D. $\frac{1-a x}{a+x}$
E. $\frac{a x+1}{a-x}$
90. If $\mathrm{f}(n)=\frac{1}{2} n(n-1)$, then,$~(n)$
4.
$\mathrm{f}(n+1)-\mathrm{f}(n)=$
A. $f(1)$
B. $\mathrm{f}(n)$
C. $\frac{n}{2}$
D. 1
E. n

90
5.

If $2=10^{p}, 3=10^{q}$, express $\log \frac{1}{6}$ in terms of p and q.
A. $-p-q$
B. $\frac{1}{p q}$
C. $\frac{1}{p+q}$
D. $p q$
E. $p+q$

90 Let $a>b>0$. If a and b are
6. respectively the $1^{\text {st }}$ and $2^{\text {nd }}$ terms of a geometric progression, the sum to infinity of the progression is
A. $\frac{1}{a-b}$
B. $\frac{a}{1-b}$
C. $\frac{a b}{b-a}$
D. $\frac{a^{2}}{a+b}$
E. $\frac{a^{2}}{a-b}$
$90 \quad a^{3}+8 a^{-3}=$
7.
B. $\left(a-\frac{1}{2 a}\right)\left(a^{2}+1+\frac{1}{4 a^{2}}\right)$
C. $\left(a+\frac{1}{2 a}\right)\left(a^{2}-\frac{1}{2}+\frac{1}{4 a^{2}}\right)$
D. $\left(a+\frac{2}{a}\right)\left(a^{2}-4+\frac{4}{a^{2}}\right)$
E. $\left(a+\frac{2}{a}\right)\left(a^{2}-2+\frac{4}{a^{2}}\right)$

90 If p and q are the roots of the equation 8. $x^{2}-x+3=0$, then $\left(2^{p-2}\right)\left(2^{q-2}\right)=$
A. $\frac{1}{32}$
B. $\frac{1}{8}$
C. $\frac{1}{2}$
D. 8
E. 32

90 If $a: b=3: 4$ and $b: c=2: 5$, then
9. $a^{2}: c^{2}=$
A. $3: 10$
B. $9: 25$
C. $9: 100$
D. $36: 25$
E. $36: 100$

90 If 1 U.S. dollar is equivalent to 7.8
10. H.K. dollars and 1000 Japanese yen are equivalent to 53.3 H.K. dollars, how many Japanese yen are equivalent to 50 U.S. dollars?
A. 1463
B. 3417
C. 7317
D. 8315
E. 20787

In the figure, the circular cylinder and the circular cone have the same height. The radius of the base of the cylinder is twice that of the cone. If the volume of the cone is $20 \mathrm{~cm}^{3}$, what is the volume of the cylinder?
A. $40 \mathrm{~cm}^{3}$
B. $80 \mathrm{~cm}^{3}$
C. $120 \mathrm{~cm}^{3}$
D. $240 \mathrm{~cm}^{3}$
E. $300 \mathrm{~cm}^{3}$

90 The length, width and height of a
12. cuboid are in the ratios $3: 2: 1$. If the total surface area of the cuboid is 88 cm^{2}, find its volume.
A. $6 \mathrm{~cm}^{3}$
B. $48 \mathrm{~cm}^{3}$
C. $48 \sqrt{2} \mathrm{~cm}^{3}$
D. $96 \sqrt{2} \mathrm{~cm}^{3}$
E. $\quad 384 \mathrm{~cm}^{3}$

90
13.

In the figure, there are nine circles, each of radius 1 . Find the shaded area.
A. $9-9 \pi$
B. $36-9 \pi$
C. $40-9 \pi$
D. $10-10 \pi$
E. $40-10 \pi$

90 Find the amount (correct to the nearest
14. dollar) of $\$ 10 \quad 000$ at 12% p.a., compounded monthly, for 2 years.
A. 10201
B. 12400
C. 12544
D. 12697
E. 151786

90 If a flat is sold for $\$ 720000$, the gain is
15.20%. Find the percentage loss if the flat is sold for $\$ 540000$.
A. 5%
B. $6 \frac{1}{4} \%$
C. 10%
D. $11 \frac{1}{9} \%$
E. $33 \frac{1}{3} \%$
$90 \sin \left(180^{\circ}+\theta\right)+\sin \left(\theta-90^{\circ}\right)=$
16.
A. $\sin \theta+\cos \theta$
B. $\sin \theta-\cos \theta$
C. $\cos \theta-\sin \theta$
D. $-\cos \theta-\sin \theta$
E. $2 \sin \theta$

90 If $0^{\circ} \leq x<360^{\circ}$, which of the following
17. equations has only one root?
A. $\sin x=0$
B. $\sin x=\frac{1}{2}$
C. $\sin x=2$
D. $\cos x=0$
E. $\quad \cos x=-1$

90
18. If $\tan \theta=-\frac{4}{3}$ and θ lies in the second quadrant, then $\sin \theta-2 \cos \theta=$
A. 2
B. -2
C. $\frac{11}{5}$
D. $\frac{2}{5}$
E. $-\frac{2}{5}$

90
19.

The figure shows a right pyramid with a square base. $V A B, V B C, V C D$ and $V D A$ are equilateral triangles. Find $\sin \angle V A H$.
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$
E. $\frac{\sqrt{3}}{2}$

90
20.

In the figure, $T Q$ is the tangent to the tangent to the circle at A. If arc $A C=$ $\operatorname{arc} B C$ and $\angle P A Q=48^{\circ}$, then $\angle Q A C=$
A. 42°
B. 48°
C. 66°
D. 71°
E. 84°

90
21.

In the figure, O is the centre of the circle. If $O R / / P Q$ and $\angle R O Q=42^{\circ}$, find $\angle R M Q$.
A. 21°
B. 42°
C. 63°
D. 84°
E. 126°

90
22.

In the figure, $A C / / D E, F G / / B C$ and $A D: D F: F B=1: 2: 3$. If $B E=10$, find $F G$.
A. 5
B. 6
C. 8
D. 9
E. 10

90
23.

In the figure, $A B C D E$ is a regular pentagon. Find $\angle A F D$.
A. 120°
B. 112°
C. 110°
D. 108°
E. 100°

90 If the mean of the numbers $3,3,3,3,4$,
24. $4,5,5,6, x$ is also x, which of the following is/are true?
I. Mean = Median
II. \quad Mode $=$ Range
III. Median = Mode
A. I and II only
B. I and III only
C. II and III only
D. None of them
E. All of them

90 Ten years ago, the mean age of a band
25. of 11 musicians was 30 . One of them is now leaving the band at the age of 40. What is the present mean age of the remaining 10 musician?
A. 40
B. 39
C. 37
D. 30
E. 29

90 There are 7 bags, 3 of which are empty 26. and the remaining 4 each contains a ball. An additional ball is now put into one of the bags at random. After that a bag is randomly selected. Find the probability of selecting an empty bag.
A. $\frac{2}{7}$
B. $\frac{3}{7}$
C. $\frac{6}{49}$
D. $\frac{12}{49}$
E. $\frac{18}{49}$
$90 \quad A B C D$ is a line segment. $A B: B C: C D$
27. $=3: 2: 1$. If $A=(4,5), D=(10,11)$, find C.
A. $(5,6)$
B. $(6,7)$
C. $(7,8)$
D. $(8,9)$
E. $(9,10)$

90
30.

A. $\frac{a}{b}$
B. $\frac{b}{a}$
C. $a b$
D. $-\frac{a}{b}$
E. $-\frac{b}{a}$

In the figure, the slopes of the straight lines l_{1}, l_{2}, l_{3}, and l_{4} are $m_{1}, m_{2}, m_{3}, m_{4}$ respectively. Which of the following is true?
A. $\quad \underline{m}_{1}>m_{2}>m_{3}>m_{4}$
B. $\quad \underline{m}_{2}>m_{1}>m_{3}>m_{4}$
C. $\quad \underline{m}_{1}>m_{2}>m_{4}>m_{3}$
D. $\quad \underline{m}_{2}>m_{1}>m_{4}>m_{3}$
E. $\quad \underline{m}_{4}>m_{3}>m_{2}>m_{1}$
90. If the line $y=m x+b$ and $\frac{x}{a}+\frac{y}{b}=1$ are perpendicular, find m.

In the figure, a circle cuts the x-axis at tow points 6 units apart. If the circle has centre $(4,5)$, then its equation is
A. $(x-4)^{2}+(y-5)^{2}=25$
B. $(x-4)^{2}+(y-5)^{2}=34$
C. $(x-4)^{2}+(y-5)^{2}=52$
D. $(x+4)^{2}+(y+5)^{2}=34$
E. $(x+4)^{2}+(y+5)^{2}=25$

90
31.

The graph of $y=a x^{2}+b x+c$ is given as shown. Which of the following is/are true?
I. $\quad a<0$
II. $\quad b<0$
III. $c<0$
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III only

90
32.

x	Sign of $\mathrm{f}(x)$
1.22	+
1.23	+
1.24	+
1.25	-
1.245	+

From the table, a root of the equation $\mathrm{f}(x)=0$ must be
A. 1.20 , correct to 2 decimal places
B. 1.24 , correct to 2 decimal places
C. 1.25 , correct to 2 decimal places
D. 1.245 , correct to 3 decimal places
E. 1.2475, correct to 4 decimal places
30. $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+$ $\frac{1}{\sqrt{4}+\sqrt{5}}=$
A. $\frac{1}{1-\sqrt{5}}$
B. $\frac{1}{\sqrt{5}-1}$
C. $1+\sqrt{5}$
D. $1-\sqrt{5}$
E. $-1+\sqrt{5}$

90 Let $\mathrm{f}(x)=3 x^{3}-4 x+k$. If $\mathrm{f}(x)$ is
34. divisible by $x-k$, find the remainder when $\mathrm{f}(x)$ is divided by $x+k$.
A. $2 k$
B. k
C. 0
D. $-k$
E. $-k-1$

90 Let m be a constant. Find the value of x
35.
such that $\left\{\begin{array}{c}x^{2}+x+1=m \\ x-1=\frac{26}{m}\end{array}\right.$
A. 1
B. 2
C. 3
D. 4
E. 5

90 If $a<b<0$, which of the following 36. must be true?
A. $-a<-b$
B. $\frac{a}{b}<1$
C. $a^{2}<b^{2}$
D. $10^{a}<10^{b}$
E. $a^{-1}<b^{-1}$

90 The H.C.F. and L.C.M. of three
37. expressions are $x y z^{2}$ and $x^{3} y^{5} z^{4}$ respectively. If two of the expressions are $x^{2} y^{3} z^{3}$ and $x^{3} y z^{2}$, find the third expression.
A. $x^{2} y^{3} z^{3}$
B. $x^{2} y^{5} z^{3}$
C. $x y^{3} z^{3}$
D. $x y^{5} z^{4}$
E. $x y^{3} z^{4}$

90 Let a, x_{1}, x_{2}, b and $a, y_{1}, y_{2}, y_{3}, b$ be two
38. arithmetic progressions. $\frac{x_{2}-x_{1}}{y_{3}-y_{2}}=$
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. 1
D. $\frac{4}{5}$
E. $\frac{5}{4}$

90
39.

In the figure, $A M=M B=M C=5$ and $B C=6$. The area of triangle $A B C=$
A. 12
B. 16
C. 24
D. 30
E. 48

90
40.

In the figure, an equilateral triangle is inscribed in a circle of radius 1 . The circumference of the circle is greater than the perimeter of the triangle by
A. $4 \pi-3 \sqrt{3}$
B. $4 \pi-\frac{3 \sqrt{3}}{2}$
C. $2 \pi-\sqrt{3}$
D. $2 \pi-\frac{3 \sqrt{3}}{2}$
E. $2 \pi-3 \sqrt{3}$

90
41.

Three equal circles of radii 1 touch each other as shown in the figure.
A. $1-\frac{\pi}{2}$
B. $\sqrt{3}-\frac{\pi}{2}$
C. $2 \sqrt{3}-\frac{\pi}{2}$
D. $\sqrt{3}-\frac{\pi}{6}$
E.

$$
2 \sqrt{3}-\frac{\pi}{6}
$$

90 If A is 30% greater than B and B is 30%
42. less than C, then
A. A is 9% less than C
B. $\quad C$ is 9% less than A
C. $A=C$
D. A is 9% greater than C
E. $\quad C$ is 9% greater than A

90 Which of the following graphs shows
43. that y is partly constant and partly varies inversely as x ?
A.

B.

C.

D.

E.

90 If $\sin \theta$ and $\cos \theta$ are the roots of the
44. equation $x^{2}+k=0$, then $k=$
A. -1
B. $-\frac{1}{2}$
C. $-\frac{1}{4}$
D. $\frac{1}{4}$
E. $\frac{1}{2}$

90
45.

The figure shows the graph of $y=3 \sin 2 x$. The point P is
A. $\left(\frac{4 \pi}{3},-3\right)$
B. $\left(\frac{3 \pi}{4},-3\right)$
C. $\left(\frac{4 \pi}{3},-1\right)$
D. $\left(\frac{3 \pi}{4},-1\right)$
E. $\left(\frac{3 \pi}{2},-1\right)$

90
46.

In the figure, $A B C D$ is a parallelogram. $B D=$
A. 5
B. 7
C. $\sqrt{13}$
D. $\sqrt{27}$
E. $\sqrt{37}$

90
47.

In the figure, A, B and C are three points on the same horizontal plane. A is due north of B, C is due east of B and H is a point vertically above A. Which of the following angles is/are 90° ?
I. $\angle H A C$
II. $\angle A B C$
III. $\angle H B C$
A. I only
B. II only
C. I and II only
D. I and III only
E. I, II and III

90
48.

In the figure, $A B$ is a diameter and $\angle B A C=30^{\circ}$. If the area of $\triangle A B C$ is $\sqrt{3}$, then the radius of the circle is
A. $\frac{1}{2}$
B. 1
C. $\sqrt{2}$
D. $\sqrt{3}$
E. 2

90
49.

In the figure, $A C=C D, \angle A B C=30^{\circ}$ and $\angle C E D=120^{\circ}$. $\frac{A B}{D E}=$
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{\sqrt{3}}$
C. $\sqrt{2}$
D. $\sqrt{3}$
E. 2

90
50.

In the figure, $P A$ and $P C$ are tangents to the circle $A B C$. If $\angle P=48^{\circ}$, then $\angle A B C=$
A. 84°
B. 96°
C. 106°
D. 114°
E. 132°

90
51.

In the figure, $T A$ and $T B$ are tangents to the circle $A B C$. If $T A \perp T B$ and $B D \perp A C$, find $\angle C B D$.
A. 30°
B. 40°
C. 45°
D. 50°
E. 60°

90
52.

In the figure, if $C D=C F, C E=B E$ and $D A=D B$, then $\angle C=$
A. 30°
B. 36°
C. 40°
D. 45°
E. 60°

In the figure $A B, A C$ and $B C$ are three tangents touching the circle at D, E and F respectively. If $A C=24, B C=18$ and $\angle A C B=90^{\circ}$, find the radius of the circle.
A. 3
B. 4
C. 5
D. 6
E. 7

90
54.

In the figure, $\triangle P T Q, \triangle S Q R$ and $\triangle R U T$ are equilateral triangles. Which of the following is/are true?
I. $\triangle U P T \cong \triangle R Q T$
II. $P U=Q S$
III. $P Q S U$ is a parallelogram
A. All of them
B. None of them
C. I and II only
D. I and III only
E. II and III only

