## Form 5

HKCEE 1989
Mathematics II
$89 \quad 3^{n-1} \times 3^{n+1}$
1.
A. $3^{n^{2}-1}$
B. $9^{n^{2}-1}$
C. $3^{2 n}$
D. $6^{2 n}$
E. $9^{2 n}$
2. $\frac{27 x^{3}-8}{3 x-2}=$
A. $(3 x-2)^{2}$
B. $9 x^{2}-4$
C. $9 x^{2}+4$
D. $9 x^{2}-6 x+4$
E. $\quad 9 x^{2}+6 x+4$
39. $\sqrt{\frac{x}{\sqrt{x}}}=$
A. $x^{\frac{3}{4}}$
B. $x^{\frac{1}{4}}$
C. $x^{\frac{1}{2}}$
D. $x^{-\frac{1}{4}}$
E. $x^{-\frac{3}{4}}$

49 If $\mathrm{f}(x)=\frac{x}{1-x}$, then $\mathrm{f}\left(\frac{1}{x}\right)=$
A. $\frac{1}{x-1}$.
B. $\frac{1}{1-x}$.
C. $\frac{x}{x-1}$.
D. $\frac{x}{1-x}$.
E. $\frac{1-x}{x}$.

89
5.


Which of the following systems of inequalities is represented by the shaded region in the figure?
A. $\left\{\begin{aligned} x+2 y & \geq 6 \\ 5 x+2 y & \geq 10 \\ y & \geq 0\end{aligned}\right.$
B. $\left\{\begin{array}{c}x+2 y \leq 6 \\ 5 x+2 y \leq 10 \\ x \geq 0\end{array}\right.$
C. $\left\{\begin{array}{c}x+2 y \geq 6 \\ 5 x+2 y \leq 10 \\ x \geq 0\end{array}\right.$
D. $\left\{\begin{array}{c}x+2 y \leq 6 \\ 5 x+2 y \geq 10 \\ y \geq 0\end{array}\right.$
E. $\left\{\begin{array}{c}x+2 y \geq 6 \\ 5 x+2 y \leq 10 \\ y \geq 0\end{array}\right.$

89 Let $\mathrm{f}(x)=a x^{2}-5$ and
6. $\mathrm{g}(x)=27 x^{3}-18 x+4$. If both expressions leave the same remainder when divided by $3 x+1$, then $a=$
A. -74
B. 0 .
C. 36 .
D. 76 .
E. 126 .

89 If $3 x>-2 y$ and $y<0$, then
7.
A. $\frac{x}{y}>-\frac{3}{2}$.
B. $\frac{x}{y}>\frac{2}{3}$.
C. $\frac{x}{y}<\frac{2}{3}$.
D. $\frac{x}{y}>-\frac{2}{3}$.
E. $\frac{x}{y}<-\frac{2}{3}$.

89 Given that $r$ is the only real root of
8. $x^{5}+x-1=0$, which of the following ranges contains $r$ ?
A. $-2<r<-1$
B. $-1<r<0$
C. $0<r<1$
D. $1<r<2$
E. $2<r<3$

89 If $z$ varies inversely as $x$ and directly as
9. $y$, then
A. $x y z$ is a constant.
B. $\frac{x z}{y}$ is a constant
C. $\frac{y z}{x}$ is a constant
D. $\frac{x z^{2}}{y}$ is a constant
E. $\frac{z^{2}}{x y}$ is a constant

89 Which of the following is/are true?
I. If both 2 and 3 are factors of $m$, then 6 is also a factor of $m$.
II. If 15 is a factor of $n$, then both 3 and 5 are factors of $n$.
III. If $p$ is a multiple of both 4 and 6 , then $p$ is also a multiple of 24 .
A. I only
B. II only
C. I and II only
D. II and III only
E. I, II and III
11.


In the figure, $A B C D$ is a square and $A E$
$=B E . \frac{\text { Area of } A E D}{\text { Area of } A B C D}=$
A. $\frac{1}{2}$
B. $\frac{3}{8}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$
E. $\frac{1}{8}$


Aright conical vessel placed on horizontal ground contains some water as shown in the figure. If $A D: D B=$ $2: 3$, then $\frac{\text { volume of empty space }}{\text { volume of water }}=$
A. $\frac{4}{9}$.
B. $\frac{8}{19}$.
C. $\frac{8}{27}$.
D. $\frac{8}{117}$
E. $\frac{8}{125}$.

89 If $A$ is greater than $B$ by $20 \%$ and $B$ is
13. smaller than $C$ by $30 \%$, then
A. $A$ is smaller than $C$ by $16 \%$
B. $A$ is smaller than $C$ by $6 \%$
C. $A$ is greater than $C$ by $6 \%$
D. $A$ is greater than $C$ by $10 \%$
E. $A$ is greater than $C$ by $16 \%$

89 At the beginning of a year, a man
14. borrows $\$ 1000$ from a bank at $5 \%$ per annum, compounded yearly. He promises to repay $\$ 300$ at the end of each year. How much will he still owe the bank just after the second repayment?
A. $\$ 402.5$
B. $\$ 450$
C. $\$ 487.5$
D. $\$ 500$
E. $\$ 502.5$

89 The least value of $9 \cos ^{2} \theta-6 \cos \theta+1$ is 15.
A. -4 .
B. 0 .
C. 1 .
D. 4 .
E. 16 .

89
16.
$\frac{1}{\frac{1}{\cos \theta}-1}-\frac{1}{\frac{1}{\cos \theta}+1}=$
A. $\frac{2}{\tan ^{2} \theta}$
B. $\frac{2}{\tan \theta}$
C. $2 \tan ^{2} \theta$
D. $\frac{2 \cos \theta}{\sin ^{2} \theta}$
E. $\frac{2 \cos ^{2} \theta}{\sin \theta}$

89
17.


The figure shows the graph of $y=\cos$ $2 x$, where $0 \leq x \leq \pi$. The area of the rectangle $A B C D$ is
A. $\frac{\pi}{2}$.
B. $\frac{\pi}{4}$.
C. $\pi$.
C. 40
D. $\frac{3 \pi}{2}$.
D. 50
E. $2 \pi$.
E. 80

89 Given that $0^{\circ} \leq \theta \leq 180^{\circ}$, how many
89
21.


In the figure, $A B C D E$ is a regular pentagon and $A B Y E$ is a rhombus. Find $\angle C A Y$.
A. $27^{\circ}$
B. $24^{\circ}$
C. $21^{\circ}$
D. $18^{\circ}$
E. $15^{\circ}$

89
A. $\frac{\sin \phi}{\sin \theta}$
B. $\frac{\cos \phi}{\cos \theta}$
C. $\frac{\tan \phi}{\tan \theta}$
D. $\frac{\cos \theta}{\cos \phi}$
E. $\frac{\tan \theta}{\tan \phi}$
22.


Referring to the figure, find $y$.
A. 20
B. 30

89
20.


In the figure $O$ is the centre of two Concentric circles. $A D O E B$ and $C G F B$ are straight lines. Which of the following is/are true?
I. $\quad A C / / D G$
II. $B F=C G$
III. $\quad A, E, F$ and $C$ are concyclic
A. I only
B. II only
C. I and II only
D. I and III only
E. I, II and III

89
24.


In the figure, $T C$ is a tangent to the circle at $C$ and $A B / / D C$. If $\angle B C T=$ $48^{\circ}$, then $\theta=$
A. $48^{\circ}$
B. $72^{\circ}$
C. $84^{\circ}$
D. $90^{\circ}$
E. $96^{\circ}$

89 Referring to the data $1,1,1,1,1,2,2$,
25. 2,3 , which of the following is/are true?
I. median < mean
II. $\quad$ range $=3$
III. $\quad$ mode $=3$
A. I only
B. II only
C. III only
D. I and II only
E. I, II and III

89 A BIASED die is thrown. Suppose the
26. probabilities of getting $1,2,3,4$, and 4 are respectively $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$ and $\frac{1}{32}$.
What is the probability of getting 6 ?
A. $\frac{1}{64}$
B. $\frac{1}{36}$
C. $\frac{1}{32}$
D. $\frac{1}{12}$
E. $\frac{1}{6}$

89 A bag contains 4 red, 3 green and 2
27. white balls. Three men $A, B$ and $C$ each draw one ball in turn from the bag at random without replacement. If $A$ draws first, $B$ second and $C$ third, what is the probability that the balls drawn by $B$ and $C$ are both white?
A. $\frac{1}{36}$
B. $\frac{1}{28}$
C. $\frac{4}{81}$
D. $\frac{25}{72}$
E. $\frac{11}{28}$

89 The equation of the straight line
28. perpendicular to $2 x+y-3=0$ and passing through $(1,-1)$ is
A. $x+2 y+1=0$.
B. $x-2 y-3=0$.
C. $-x+2 y-1=0$.
D. $2 x+y-1=0$.
E. $2 x-y-3=0$.

89
29.


In the figure, the line $a x-2 y+5=0$ passes through the point $(3,4)$. What is the area of the shaded part?
A. 6
B. $\frac{25}{4}$
C. 10
D. 12
E. $\frac{25}{2}$

89
30.


In the figure, $C$ is the centre of the circle $x^{2}+y^{2}-8 x-7 y+12=0$. If the circle cuts the $x$-axis at $A$ and $B$, find the area of $\triangle C A B$.
A. $\frac{7}{4}$
B. $\frac{7}{2}$
C. 7
D. 8
E. 14

89
31.


In the figure, $C$ is the centre of the circle $x^{2}+y^{2}-6 x-8 y+21=0$. $O A$ and $O B$ are tangents. If $\angle A O B=2 \theta$, find $\sin \theta$.
A. $\frac{\sqrt{21}}{5}$
B. $\frac{4}{5}$
C. $\frac{3}{5}$
D. $\frac{2}{\sqrt{21}}$
E. $\frac{2}{5}$

89
32.



In the figure, $A B C D$ and $W X Y Z$ are sectors of equal radii. If $\operatorname{arc} B C D: \operatorname{arc} X Y Z=s: t$, then which of the following is/are true?
I. $\frac{B D}{X Z}=\frac{s}{t}$
II. $\frac{\text { area of sector } A B C D}{\text { area of sector } W X Y Z}=\frac{s}{t}$
III. $\frac{\angle B A D}{\angle X W Z}=\frac{s}{t}$
A. I only
B. II only
C. III only
D. I and III only
E. II and III only


In the figure, $O$ is the centre of two concentric circles. $A B$ is tangent to the smaller circle. If $A B=2$, find the area of the shaded part.
A. $\frac{\pi}{2}$
B. $\pi$
C. $2 \pi$
D. $4 \pi$
E. It cannot be found.

89 If 10 arithmetic means are inserted
34. between $a$ and $b$, then the last one is
A. $\frac{10 a+b}{11}$.
B. $\frac{9 a+b}{10}$.
C. $\frac{10(b-a)}{11}$.
D. $\frac{a+9 b}{10}$.
E. $\frac{a+10 b}{11}$.
89. Given that $y \propto \frac{1}{x}$, if $x$ increased by $25 \%$, find the percentage change in $y$.
A. Decreased by $20 \%$
B. Decreased by $25 \%$
C. Decreased by $80 \%$
D. Increased by $20 \%$
E. Increased by $25 \%$

89 The costs of two kinds of coffee $A$ and
36. $B$ are $\$ 12 / \mathrm{kg}$ and $\$ 20 / \mathrm{kg}$ respectively. In what ratio by weight should $A$ and $B$ be mixed so that the mixture will cost \$15/kg?
A. $4: 3$
B. $5: 2$
C. $5: 3$
D. $3: 2$
E. $5: 4$

## 89

37. 



In the figure, $D$ and $E$ are points on $A B$ and $A C$ respectively such that $\angle A B C=$ $\angle A E D, A D=8, A E=5$ and $E C=15$. If the area of $\triangle A D E$ is 16 , then the area of the quadrilateral $B C E D$ is
A. 200 .
B. 100
C. 96 .
D. 84 .
E. 40

89
38.


In the figure, $O$ is the centre of the circle of radius 6 cm . The area of the shaded part is
A. $2 \pi \mathrm{~cm}^{2}$.
B. $4 \pi \mathrm{~cm}^{2}$.
C. $6 \pi \mathrm{~cm}^{2}$.
D. $9 \pi \mathrm{~cm}^{2}$.
E. $12 \pi \mathrm{~cm}^{2}$.

89 If the sum to infinity of the G.P. $1,-t$,
39. $t^{2},-t^{3}, \ldots$ is $\frac{2}{3}$, find the fourth term.
A. $-\frac{1}{16}$
B. $-\frac{1}{8}$
C. $\frac{1}{16}$
D. $\frac{1}{8}$
E. $\frac{5}{8}$
89. If $\frac{x+3 y}{2 x+y}=2$, find $\frac{3 x+y}{x+2 y}$
A. 2
B. 3
C. $\frac{1}{2}$
D. $\frac{1}{3}$
E. $\frac{6}{7}$
41. $\frac{\left(1-x^{2}\right)^{n}+(1-x)^{n}}{(1-x)^{2 n}}=$
A. $\frac{(1+x)^{n}+1}{(1-x)^{n}}$
B. $\frac{2-x-x^{2}}{(1-x)^{2}}$
C. $\frac{(1+x)^{n}+1}{(1-x)^{2}}$
D. $\frac{(1-x)^{n}+1}{(1+x)^{n}}$
E. $\frac{2-x^{n}+x^{2 n}}{1-x^{2 n}}$
$89 \log _{4} 2 \sqrt{2}=$
42.
A. $\frac{3}{8}$
B. $\frac{3}{4}$
C. $\frac{1}{4}$
D. $2^{\frac{3}{4}}$
E. $2^{\frac{3}{8}}$

89 If $x=\sqrt{a+1}-\sqrt{a}$, where $a>0$, then
43.
$x+\frac{1}{x}$
A. 2 .
B. $2 \sqrt{a}$.
C. $2 \sqrt{a+1}$.
D. $2 \sqrt{a+1}-\sqrt{a}$.
E. $2(\sqrt{a+1}+\sqrt{a})$.

89 If $p$ is a root of $a x^{2}+b x+c=0$, which
44. of the following is a root of $a\left(\frac{x-3}{2}\right)^{2}+b\left(\frac{x-3}{2}\right)+c=0$ ?
A. $2 p+3$
B. $2 p-3$
C. $3-2 p$
D. $\frac{p+3}{2}$
E. $\frac{p-3}{2}$

89
45.


In figure shows the graph of a quadratic function $y=\mathrm{f}(x)$. Given that the graph has vertex $(2,18)$ and it cuts the $x$-axis at
$(5,0)$, find the quadratic function.
A. $y=(x-2)^{2}+18$
B. $y=-(x-2)^{2}+18$
C. $y=(x+1)(x-5)$
D. $y=-2(x+1)(x-5)$
E. $y=2(x-1)(x+5)$

89 If $2 \sin 2 \theta-\sin \theta \cos \theta-\cos ^{2} \theta=0$, the
46. $\tan \theta$
A.

$$
1 \text { or } \frac{1}{2}
$$

89
B. -1 or $\frac{1}{2}$.
C. 1 or $-\frac{1}{2}$.
D. -1 or $-\frac{1}{2}$.
E. 1 or -2 .

89
47.


In the figure, $V A B C D$ is a right pyramid of height 3 cm . The base $A B C D$ is a square of side 2 cm . Let $\theta$ be the angle between the face $V B C$ and the base. Find $\tan \theta$
A. $\frac{1}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{3}{2}$
D. $\frac{3 \sqrt{2}}{2}$
E. 3
48.


In the figure, if $\cos \theta=\frac{3}{4}$, find the value of $x$.
A. 2
B. 3
C. 4
D. 5
E. 6


A vertical rectangular wall on the horizontal ground, 1 m high and 10 m long, runs east and west as shown in the figure. If the sun bears $S 60^{\circ} \mathrm{E}$ at an elevation of $45^{\circ}$, find the area of the shadow of the wall on the ground.
A. $\frac{5}{2} \mathrm{~m}^{2}$
B. $5 \mathrm{~m}^{2}$
C. $5 \sqrt{2} \mathrm{~m}^{2}$
D. $5 \sqrt{3} \mathrm{~m}^{2}$
E. $\quad 10 \mathrm{~m}^{2}$

89
50.


In the figure, $A B C D$ is a trapezium with $A B / / D C$. If $B C=1$, then $A D=$
A. $\frac{\sin \beta}{\sin \alpha}$.
B. $\frac{\sin \alpha}{\sin \beta}$.
C. $\sin \alpha \sin \beta$.
D. $\frac{\cos \beta}{\cos \alpha}$.
E. $\frac{\cos \alpha}{\cos \beta}$.

89
51.


In the figure, $O$ is the centre of the smaller circle. $O A B$ and $P Q R$ are straight lines. Find $\theta$.
A. $56^{\circ}$
B. $108^{\circ}$
C. $112^{\circ}$
D. $118^{\circ}$
E. $124^{\circ}$

89
52.


In the figure, $B$ is the mid-point of arc $A C$. $A C=A D$. If $\angle A D C=56^{\circ}$, then $\angle B C D=$
A. $84^{\circ}$.
B. $90^{\circ}$.
C. $96^{\circ}$.
D. $112^{\circ}$.
E. $\quad 124^{\circ}$.


In the figure, $A B C D$ is a parallelogram. $E$ and $F$ are the mid-points of $A B$ and $D C$ respectively. $B F$ and $E D$ cut $A C$ at $P$ and $Q$ respectively. If the area of $A B C D$ is 48, find the area of the shaded part.
A. 6
B. 8
C. 9.6
D. 12
E. 16

89
54.


In the figure, $A C$ cuts $B D$ at $O$. The areas of $\triangle A O B, \triangle A O D$ and $\triangle B O C$ are 7 $\mathrm{cm}^{2}, 12 \mathrm{~cm}^{2}$ and $10.5 \mathrm{~cm}^{2}$ respectively. Find the area of $\triangle O C D$.
A. $5.5 \mathrm{~cm}^{2}$
B. $8 \mathrm{~cm}^{2}$
C. $8.5 \mathrm{~cm}^{2}$
D. $\quad 15.5 \mathrm{~cm}^{2}$
E. $18 \mathrm{~cm}^{2}$

