Form 5

HKCEE 1989 Mathematics II

89 1.	$3^{n-1} \times 3^{n+1}$		E. $\frac{1-x}{x}$.
	A. 3^{n^2-1} B. 9^{n^2-1} C. 3^{2n} D. 6^{2n} E. 9^{2n}	89 5.	y x + 2y = 6
89 2.	$\frac{27x^3 - 8}{3x - 2} =$ A. $(3x - 2)^2$		5x + 2y = 10
	B. $9x^2 - 4$ C. $9x^2 + 4$ D. $9x^2 - 6x + 4$ E. $9x^2 + 6x + 4$		Which of the following systems of inequalities is represented by the shaded region in the figure?
89 3.	$\sqrt{\frac{x}{\sqrt{x}}} =$		A. $\begin{cases} x+2y \ge 6\\ 5x+2y \ge 10\\ y \ge 0 \end{cases}$
	A. $x^{\frac{3}{4}}$ B. $\frac{1}{x^{\frac{1}{4}}}$		B. $\begin{cases} x+2y \le 6\\ 5x+2y \le 10\\ x \ge 0 \end{cases}$
	C. $\frac{1}{x^2}$ D. $\frac{-1}{x^4}$ E. $\frac{-3}{x^4}$		C. $\begin{cases} x + 2y \ge 6\\ 5x + 2y \le 10\\ x \ge 0 \end{cases}$
89 4.	If $f(x) = \frac{x}{1-x}$, then $f(\frac{1}{x}) =$		D. $\begin{cases} x+2y \le 6\\ 5x+2y \ge 10\\ y \ge 0 \end{cases}$ E. $(x+2y \ge 6$
	$\begin{array}{c} A. & \frac{1}{x-1} \\ B. & 1 \end{array}$		$\begin{cases} x + 2y \ge 0\\ 5x + 2y \le 10\\ y \ge 0 \end{cases}$
	$\overline{1-x}$ C. $\frac{x}{x-1}$ D. $\frac{x}{1-x}$.	89 6.	Let $f(x) = ax^2 - 5$ and $g(x) = 27x^3 - 18x + 4$. If both expressions leave the same remainder when divided by $3x + 1$, then $a =$

A. -74.
B. 0.
C. 36.
D. 76.

- E. 126.
- 89 If 3x > -2y and y < 0, then 7.

A.	$\frac{x}{y} > -\frac{3}{2} \ .$	
B.	$\frac{x}{y} > \frac{2}{3} .$	
C.	$\frac{x}{y} < \frac{2}{3} .$	
D.	$\frac{x}{y} > -\frac{2}{3} \ .$	
E.	$\frac{x}{y} < -\frac{2}{3} \ .$	

- 89 Given that *r* is the only real root of
- 8. $x^5 + x 1 = 0$, which of the following ranges contains *r*?
 - A. -2 < r < -1
 - B. -1 < r < 0
 - C. 0 < r < 1
 - D. 1 < r < 2
 - E. 2 < r < 3
- 89 If *z* varies inversely as *x* and directly as9. *y*, then
 - A. xyz is a constant. B. $\frac{xz}{y}$ is a constant C. $\frac{yz}{x}$ is a constant D. xz^{2} is a constant

E.
$$\frac{z^2}{xy}$$
 is a constant

89 Which of the following is/are true?10.

- I. If both 2 and 3 are factors of *m*, then 6 is also a factor of *m*.
- II. If 15 is a factor of *n*, then both 3 and 5 are factors of *n*.
- III. If p is a multiple of both 4 and 6, then p is also a multiple of 24.
- A. I only
- B. II only

89

11.

- C. I and II only
- D. II and III only
- E. I, II and III

In the figure, ABCD is a square and AEDE Area of AED

BE.
$$\frac{}{\text{Area of } ABCD} =$$

A.
$$\frac{1}{2}$$

B. $\frac{3}{8}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$
E. 1

8

89 12.

Aright conical vessel placed on horizontal ground contains some water as shown in the figure. If AD : DB =2:3, then $\frac{\text{volume of empty space}}{\text{volume of water}} =$

A.	4
	$\frac{-}{9}$.
B.	8
	$\overline{19}$.
C.	8
	$\overline{27}$.
D.	8
	$\overline{117}$.
E.	8
	$\overline{125}$ ·

89 If A is greater than B by 20% and B is13. smaller than C by 30%, then

- A. *A* is smaller than *C* by 16%
- B. A is smaller than C by 6%
- C. A is greater than C by 6%
- D. *A* is greater than C by 10%
- E. *A* is greater than *C* by 16%

89 At the beginning of a year, a man
14. borrows \$1000 from a bank at 5% per annum, compounded yearly. He promises to repay \$300 at the end of each year. How much will he still owe the bank just after the second repayment?

- A. \$402.5
- B. \$450
- C. \$487.5

- D. \$500
- E. \$502.5

89 The least value of $9\cos^2\theta - 6\cos\theta + 1$ is 15.

 $\begin{array}{rrrr} A. & -4 \\ B. & 0 \\ C. & 1 \\ D. & 4 \\ E. & 16 \\ \end{array}$

$$\begin{array}{rcl}
89 & 1 & -1 & -\frac{1}{1 \cos \theta} = \\
\text{A.} & \frac{2}{\tan^2 \theta} \\
\text{B.} & \frac{2}{\tan^2 \theta} \\
\text{C.} & 2 \tan^2 \theta \\
\text{D.} & \frac{2 \cos \theta}{\sin^2 \theta} \\
\text{E.} & \frac{2 \cos^2 \theta}{\sin \theta}
\end{array}$$

89 17.

The figure shows the graph of $y = \cos 2x$, where $0 \le x \le \pi$. The area of the rectangle *ABCD* is

A. $\frac{\pi}{2}$. B. $\frac{\pi}{4}$. C. π .

3

D.
$$\frac{3\pi}{2}$$
.
E. 2π .

89 Given that $0^{\circ} \le \theta \le 180^{\circ}$, how many 18. roots has the equation $(\sin \theta + 1)(\tan \theta + 3) = 0$?

- A. 0
- **B**. 1
- C. 2
- D. 3
- E. 4

89 19.

In the figure, $AD \perp BC$. Find $\frac{x}{y}$

- A. $\frac{\sin \phi}{\sin \theta}$ B. $\frac{\cos \phi}{\cos \theta}$ C. $\frac{\tan \phi}{\tan \theta}$
- D. $\frac{\cos\theta}{\cos\phi}$
- E. $\frac{\tan\theta}{\tan\phi}$

89 20.

Referring to the figure, find *y*.

- A. 20
- B. 30

C. 40D. 50E. 80

89

21.

In the figure, *ABCDE* is a regular pentagon and *ABYE* is a rhombus. Find $\angle CAY$.

- $\begin{array}{rrrr} A. & 27^{\circ} \\ B. & 24^{\circ} \\ C. & 21^{\circ} \\ D. & 18^{\circ} \\ E. & 15^{\circ} \end{array}$
- .

89

22.

Referring to the figure, find the length of the line segment joining P and Q.

A. 25

- C. 18
- D. $8\sqrt{5}$
- E. $\sqrt{194}$

In the figure *O* is the centre of two Concentric circles. *ADOEB* and *CGFB* are straight lines. Which of the following is/are true?

- I. AC // DG
- II. BF = CG
- III. A, E, F and C are concyclic
- A. I only
- B. II only
- C. I and II only
- D. I and III only
- E. I, II and III
- 89 24.

In the figure, *TC* is a tangent to the circle at *C* and *AB* // *DC*. If $\angle BCT = 48^{\circ}$, then $\theta =$

- A. 48°
- B. 72°
- C. 84°
- D. 90°
- E. 96°

- 89 Referring to the data 1, 1, 1, 1, 1, 2, 2,
- 25. 2, 3, which of the following is/are true?
 - I. median < mean
 - II. range = 3
 - III. mode = 3
 - A. I only
 - B. II only
 - C. III only
 - D. I and II only
 - E. I, II and III

89 A **BIASED** die is thrown. Suppose the 26. probabilities of getting 1, 2, 3, 4, and 4 are respectively $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$ and $\frac{1}{32}$. What is the probability of getting 6?

A.	1
	64
B.	1
	36
C.	1
	32
D.	1
	$\overline{12}$
E.	1
	$\overline{6}$

89 A bag contains 4 red, 3 green and 2
27. white balls. Three men A, B and C each draw one ball in turn from the bag at random without replacement. If A draws first, B second and C third, what is the probability that the balls drawn by B and C are both white?

A.	1
	36
B.	1
	28
C.	4
	81
D.	25
	72

- E. 11 28
- 89 The equation of the straight line 28. perpendicular to 2x + y - 3 = 0 and passing through (1, -1) is
 - A. x + 2y + 1 = 0. B. x - 2y - 3 = 0C. -x + 2y - 1 = 0. D. 2x + y - 1 = 0. E. 2x - y - 3 = 0

In the figure, the line ax - 2y + 5 = 0passes through the point (3, 4). What is the area of the shaded part?

- 6 A.
- B. 25
- 4
- C. 10 D. 12
- E.
- 25 2
- 89 30.

In the figure, C is the centre of the circle $x^2 + y^2 - 8x - 7y + 12 = 0$. If the circle cuts the x-axis at A and B, find the area of $\triangle CAB$.

A.
$$\frac{7}{4}$$

B. $\frac{7}{2}$
C. 7
D. 8
E. 14

89

31.

In the figure, C is the centre of the circle $x^2 + y^2 - 6x - 8y + 21 = 0$. OA and *OB* are tangents. If $\angle AOB = 2\theta$, find $\sin \theta$.

A.
$$\frac{\sqrt{21}}{5}$$

B.
$$\frac{4}{5}$$

C.
$$\frac{3}{5}$$

D.
$$\frac{2}{\sqrt{21}}$$

E.
$$\frac{2}{5}$$

89

32.

In the figure, *ABCD* and *WXYZ* are sectors of equal radii. If arc *BCD* : arc *XYZ* = s : t, then which of the following is/are true?

I.
$$\frac{BD}{XZ} = \frac{s}{t}$$

II. $\frac{\text{area of sector } ABCD}{\text{area of sector } WXYZ} = \frac{s}{t}$

$$\frac{\angle BAD}{\angle XWZ} = \frac{s}{t}$$

- A. I only
- B. II only
- C. III only
- D. I and III only
- E. II and III only
- 89 33.

In the figure, *O* is the centre of two concentric circles. *AB* is tangent to the smaller circle. If AB = 2, find the area of the shaded part.

- A. *π*
- 2
- B. *π*
- C. 2π
- D. 4π
- E. It cannot be found.

- 89 If 10 arithmetic means are inserted
- 34. between *a* and *b*, then the last one is

A.
$$\frac{10a+b}{11}$$
.
B.
$$\frac{9a+b}{10}$$
.
C.
$$\frac{10(b-a)}{11}$$

D.
$$\frac{a+9b}{10}$$
.
E.
$$\frac{a+10b}{11}$$
.

⁸⁹ 35. Given that $y \propto \frac{1}{x}$, if x increased by 25%, find the percentage change in y.

- A. Decreased by 20%
- B. Decreased by 25%
- C. Decreased by 80%
- D. Increased by 20%
- E. Increased by 25%
- 89 The costs of two kinds of coffee A and
- 36. *B* are \$12/kg and \$20/kg respectively. In what ratio by weight should *A* and *B* be mixed so that the mixture will cost \$15/kg?
 - A. 4:3
 B. 5:2
 C. 5:3
 D. 3:2
 E. 5:4

In the figure, *D* and *E* are points on *AB* and *AC* respectively such that $\angle ABC = \angle AED$, AD = 8, AE = 5 and EC = 15. If the area of $\triangle ADE$ is 16, then the area of the quadrilateral *BCED* is

- A. 200.
- B. 100.
- C. 96.
- D. 84.
- E. 40.
- 89 38.

In the figure, O is the centre of the circle of radius 6 cm. The area of the shaded part is

- A. $2\pi \text{ cm}^2$.
- B. $4\pi \text{ cm}^2$.
- C. $6\pi \text{ cm}^2$.
- D. 9π cm².
- E. 12π cm².
- 89 If the sum to infinity of the G.P. 1, -t, 39. t^2 , $-t^3$, ... is $\frac{2}{3}$, find the fourth term.

A.
$$-\frac{1}{16}$$

B. $-\frac{1}{8}$
C. $\frac{1}{16}$
D. $\frac{1}{8}$
E. 5

8

⁸⁹_{40.} If
$$\frac{x+3y}{2x+y} = 2$$
, find $\frac{3x+y}{x+2y}$

$$\begin{array}{rrrr} A. & 2 \\ B. & 3 \\ C. & \frac{1}{2} \\ D. & \frac{1}{3} \\ E. & \frac{6}{7} \end{array}$$

$$\begin{array}{rcl}
89\\
41. & \frac{(1-x^2)^n + (1-x)^n}{(1-x)^{2n}} = \\
& & \text{A.} & \frac{(1+x)^n + 1}{(1-x)^n} \\
\end{array}$$

B.
$$\frac{2-x-x^2}{(1-x)^2}$$

C. $\frac{(1+x)^n+1}{(1-x)^2}$

D.
$$\frac{(1-x)^n + 1}{(1+x)^n}$$

E. $\frac{2-x^n + x^{2n}}{1-x^{2n}}$

$$\begin{array}{l} 89\\ 42. \end{array} \quad \log_4 2\sqrt{2} = \\ \end{array}$$

A. $\frac{3}{8}$ B. $\frac{3}{4}$ C. $\frac{1}{4}$ D. $\frac{3}{2^{\frac{3}{4}}}$ E. $\frac{3}{2^{\frac{3}{8}}}$

89 If $x = \sqrt{a+1} - \sqrt{a}$, where a > 0, then 43. $x + \frac{1}{x}$

A. 2.
B.
$$2\sqrt{a}$$
.
C. $2\sqrt{a+1}$.
D. $2\sqrt{a+1} - \sqrt{a}$.
E. $2(\sqrt{a+1} + \sqrt{a})$.

89 If p is a root of $ax^2 + bx + c = 0$, which 44. of the following is a root of

of the following is a root of
$$a(\frac{x-3}{2})^2 + b(\frac{x-3}{2}) + c = 0?$$

A.
$$2p + 3$$

B. $2p - 3$
C. $3 - 2p$
D. $\frac{p + 3}{2}$
E. $p - 3$

2

89 45.

In figure shows the graph of a quadratic function y = f(x). Given that the graph has vertex (2, 18) and it cuts the *x*-axis at

(5, 0), find the quadratic function.

A.
$$y = (x - 2)^2 + 18$$

B. $y = -(x - 2)^2 + 18$
C. $y = (x + 1)(x - 5)$
D. $y = -2(x + 1)(x - 5)$

E.
$$y = 2(x - 1)(x + 5)$$

89 If $2\sin 2\theta - \sin \theta \cos \theta - \cos^2 \theta = 0$, the 46. $\tan \theta$

A. 1 or
$$\frac{1}{2}$$

B.
$$-1 \text{ or } \frac{1}{2}$$
.
C. $1 \text{ or } -\frac{1}{2}$.
D. $-1 \text{ or } -\frac{1}{2}$.
E. $1 \text{ or } -2$.

89

47.

In the figure, *VABCD* is a right pyramid of height 3 cm. The base *ABCD* is a square of side 2 cm. Let θ be the angle between the face *VBC* and the base. Find tan θ

In the figure, if $\cos \theta = \frac{3}{4}$, find the value of *x*.

89 48.

- B. 3 C. 4
- D. 5
- E. 6

A vertical rectangular wall on the horizontal ground, 1 m high and 10 m long, runs east and west as shown in the figure. If the sun bears $S60^{\circ}E$ at an elevation of 45° , find the area of the shadow of the wall on the ground.

A. $\frac{5}{2} m^2$ B. $5 m^2$ C. $5\sqrt{2} m^2$ D. $5\sqrt{3} m^2$ E. $10 m^2$

In the figure, *ABCD* is a trapezium with AB // DC. If BC = 1, then AD =

- A. $\underline{\sin\beta}$
- $\sin \alpha$
- B. $\frac{\sin \alpha}{\sin \beta}$
- C. $\sin \alpha \sin \beta$.

D.
$$\frac{\cos\beta}{\cos\alpha}$$

In the figure, O is the centre of the smaller circle. OAB and PQR are straight lines. Find θ .

 $\begin{array}{rll} A. & 56^{\circ} \\ B. & 108^{\circ} \\ C. & 112^{\circ} \\ D. & 118^{\circ} \\ E. & 124^{\circ} \end{array}$

89

52.

In the figure, *B* is the mid-point of arc AC. AC = AD. If $\angle ADC = 56^{\circ}$, then $\angle BCD =$

A.	84°.
B.	90° .
C.	96°.
D.	112° .
F	124°

In the figure, ABCD is a parallelogram. *E* and *F* are the mid-points of *AB* and *DC* respectively. *BF* and *ED* cut *AC* at *P* and *Q* respectively. If the area of *ABCD* is 48, find the area of the shaded part.

A.	6
B.	8

- C. 9.6
- D. 12
- E. 16

In the figure, AC cuts BD at O. The areas of $\triangle AOB$, $\triangle AOD$ and $\triangle BOC$ are 7 cm², 12 cm² and 10.5 cm² respectively. Find the area of $\triangle OCD$.

A.	5.5 cm^2
B.	8 cm^2
C.	8.5 cm^2
D.	15.5 cm^2
E.	18 cm^2