Form 5

HKCEE 1986
 Mathematics II

86 If $r=\sqrt[3]{h^{3}-7 r^{3}}$, then the ratio $r: h$ is
A. $1: 8$.
B. $1: 2 \sqrt{2}$.
C. $1: 2$.
D. $1: \sqrt{2}$.
E. $1: \sqrt[3]{2}$.
2. $\frac{\frac{x^{2}}{3}-3 y^{2}}{\frac{3}{2}(x-3 y)}=$
A. $\frac{1}{2}(x-3 y)$.
B. $\frac{2}{9}(x-3 y)$.
C. $2(x+3 y)$.
D. $\frac{1}{2}(x+3 y)$.
E. $\frac{2}{9}(x+3 y)$.
86. If $1-\frac{x+y}{y-x}=a(a \neq 0)$, then $y=$
A. x.
B. $\frac{x}{a}(a-2)$.
C. $\frac{x}{a}(a-1)$.
D. $\frac{x}{a}(2-a)$.
E. $\frac{x}{a}(1-a)$.

86 Which of the following is an 4. identity/are identities?
I. $(x+1)(x-1)=x^{2}+1$,
II. $x^{2}-2 x+1=0$,
III. $(x-2)^{2}=(2-x)^{2}$.
A. I only
B. II only
C. III only
D. I and II only
E. I and III only

86 Given the identity
5. $\frac{2}{x-1}+\frac{x+1}{(x-1)^{2}}+\frac{a}{(1-x)^{2}}=\frac{b x-2}{(x-1)^{2}}$, find the values of the constants a and b.
A. $\quad a=1, b=3$.
B. $\quad a=3, b=1$.
C. $\quad a=1, b=-3$.
D. $a=3, b=-1$.
E. $\quad a=-1, b=3$.

86 If α and β are the roots of the equation
6. $2 x^{2}+x+3=0$, find the value of $\alpha-\frac{\alpha^{2}}{\alpha+\beta}$
A. -3 .
B. -2 .
C. 2 .
D. 3 .
E. It cannot be determined.

86
7.

The figure shows an infinite number of squares. The length of a side of the first square is 1 . The side of the first square is equal to half of the side of the preceding one. Find the sum of the areas of the infinite number of squares.
A. 4 .
B. 2 .
C. $\frac{5}{3}$.
D. $\frac{3}{2}$.
E. $\frac{4}{3}$.

86 Find the real value of x such that
$\left\{\begin{array}{c}x^{2}+x+1=k \\ x-1=\frac{7}{k}\end{array}\right.$, where k is a constant.
A. 3 .
B. 2 .
C. 1 .
D. -1 .
E. -3 .

86
9.

The figure shows two sectors with radii r and $2 r$. If these two sectors are equal in area, then $\theta_{1}: \theta_{2}=$
A. 2:1.
B. $3: 1$.
C. $4: 1$.
D. 5:1.
E. 6:1.

86
10.

In the figure, $A B C D$ is a straight line with $A B=B C=C D$. Three circles I, II and III are drawn respectively on $A B$, $A C$ and $A D$ as diameters. Areas of circle I : Area of circle II : Area of circle III =
A. 1:2:3.
B. $1: 2: 4$.
C. 1:4:9.
D. $1: 4: 16$.
E. $1: 8: 27$.

86 A man drives a car at $45 \mathrm{~km} / \mathrm{h}$ for 3
11. hours and then at $50 \mathrm{~km} / \mathrm{h}$ for 2 hours. His average speed for the whole journey is
A. $\quad 47 \mathrm{~km} / \mathrm{h}$.
B. $\quad 47.5 \mathrm{~km} / \mathrm{h}$.
C. $48 \mathrm{~km} / \mathrm{h}$.
D. $48.5 \mathrm{~km} / \mathrm{h}$.
E. $\quad 49 \mathrm{~km} / \mathrm{h}$.

86
12.

Sphere

Right circular cylineder

In the figure, if
$\frac{\text { Volume of the sphere }}{\text { Volume of the right circular cylinder }}=$
$\frac{9}{2}$, then $\frac{R}{r}=$
A. $\frac{3}{2}$.
B. $\frac{3}{\sqrt{2}}$.
C.
D. $\frac{\sqrt[3]{9}}{\sqrt[3]{2}}$.
E. $\frac{9}{2}$.
86
15.

86 If the compound interest on $\$ 1000$ for
13. two years at 9% p.a., pay half-yearly is $\$ x$, find x.
A. $1000 \times \frac{9}{100} \times 2$.
B. $1000\left(1+\frac{9}{100}\right)^{4}$.
C. $1000\left(1+\frac{4.5}{100}\right)^{4}$.
D. $1000\left(1+\frac{9}{100}\right)^{2}-1000$.
E. $1000\left(1+\frac{4.5}{100}\right)^{4}-1000$.

86
14. If $\sin \theta \cos \theta=\frac{1}{4}$, then $(\sin \theta+\cos \theta)^{2}$ $=$
A. 2 .
B. $\frac{3}{2}$.
C. 1 .
D. $\frac{1}{2}$.
E. $\frac{1}{4}$.

Which of the following functions may be represented by the above graph in the interval 0 to 2π ?
A. $y=\cos 2 x$.
B. $y=2 \cos x$.
C. $y=\frac{1}{2} \cos 2 x$.
D. $y=\sin 2 x$.
E. $y=2 \sin 2 x$.
$86 \sin ^{4} \theta-\cos ^{4} \theta=$
16.
A. -1 .
B. $1-2 \cos ^{4} \theta$.
C. $\sin \theta-\cos \theta$.
D. $\sin ^{2} \theta-\cos ^{2} \theta$.
E. $2 \sin ^{4} \theta-1$.

86
17.

In the figure, $\angle A: \angle B: \angle C=$
A. $2: \sqrt{3}: 1$.
B. $4: 3: 1$.
C. $3: 2: 1$.
D. $\sqrt{3}: \sqrt{2}: 1$.
E. $1: 2: \sqrt{3}$

86
18.

In the figure, if the area of the sector is x, then $\operatorname{arc} A C B=$
A. $\frac{2 x}{r}$.
B. $\frac{x}{r}$.
C. $\frac{2 x}{r^{2}}$.
D. $\frac{\pi x}{90 r}$.
E. $\frac{90 x}{\pi r}$.

86
19.

In the figure, $A C=A D=1 . \angle A B D=$ 20° and $\angle C A D=120^{\circ}$, find $A B$.
A. $2 \cos 20^{\circ}$.
B. $\frac{1}{2 \sin 20^{\circ}}$.
C. $\frac{\sqrt{3}}{2 \sin 20^{\circ}}$.
D. $\sqrt{3} \cos 20^{\circ}$.
E. $2 \sin 20^{\circ}$.

86 The bearing of a lighthouse as observed
20. from an ocean liner is N 37 oE , the bearing of the ocean linear as observed from the light house is
A. $\quad \mathrm{N} 37^{\circ} \mathrm{E}$.
B. $\quad \mathrm{N} 53^{\circ} \mathrm{W}$.
C. $\quad \mathrm{S} 37^{\circ} \mathrm{E}$.
D. $\quad S 37^{\circ} \mathrm{W}$.
E. $\quad \mathrm{S} 53^{\circ} \mathrm{W}$.

86 Which of the following represents a 21. circle?
A. $2 x^{2}-8 y+5=0$.
B. $2 x^{2}+y^{2}-4 x-3 y=0$.
C. $3 x^{2}+3 y^{2}-5 x-7=0$.
D. $x^{2}-y^{2}-7 x+6 y+1=0$.
E. $x^{2}+y^{2}+2 x y+7 y-1=0$.

In the figure, L_{1} and L_{2} are two straight lines perpendicular to each other and intersecting at P on the y-axis. If the equation of L_{1} is $y=a x-5$, then the equation of L_{2} is
A. $y=-\frac{1}{a} x-5$.
B. $y=-\frac{1}{a}+5$.
C. $y=-a x-5$.
D. $y=-a x+5$.
E. $y=-\frac{1}{a} x$.

86
23.

In the figure, $x=$
A. 77°.
B. 84°.
C. 96°.
D. 103°.
E. $\quad 115^{\circ}$.

86
24.

In the figure, $A B C, A C D, A D E$ and $A E F$ are right angled isosceles triangles. If $A B=B C=1$, how long is $A F$?
A. $2 \sqrt{5}$.
B. 4 .
C. $2 \sqrt{3}$.
D. 3 .
E. $\sqrt{5}$.

86
25.

In the figure, A, B, C, D and E lie on a circle. $A C$ intersects $B E$ at $K . \angle A C D=$ 100° and $\angle C D E=130^{\circ}$. If $B E / / C D$, then $\angle A C B=$
A. $\quad 25^{\circ}$.
B. 30°.
C. 36°.
D. 40°.
E. 42°.

86 In a shooting game, the probabilities for
26. John and Mary to hit a target are $\frac{4}{5}$ and $\frac{3}{5}$ respectively. When both shoot at the target, what is the probability that they both miss.
A. $\frac{2}{25}$
B. $\frac{3}{25}$
C. $\frac{8}{25}$
D. $\frac{12}{25}$
E. $\frac{13}{25}$

86 Given two groups of numbers
27. $a+1, a+2, a+3$ and $b+1, b+2, b+3$,
where $a>b . \quad m_{1}$ and m_{2} are respectively the means of the two groups, and s_{1} and s_{2} are respectively their standard deviations. Which of the following is true?
A. $\quad m_{1}>m_{2}$ and $s_{1}>s_{2}$.
B. $m_{1}>m_{2}$ and $s_{1}=s_{2}$.
C. $m_{1}=m_{2}$ and $s_{1}>s_{2}$.
D. $m_{1}=m_{2}$ and $s_{1}=s_{2}$.
E. $\quad m_{1}>m_{2}$ and $s_{1}<s_{2}$.

86
28.

The figure shows the frequency curve of a certain distribution. Which of the following can be the distribution's cummulative frequency curve?
A.

B.

C.

D.

E.

86 If $\left(10^{x}\right)^{y}=\left(2^{z}\right)\left(5^{z}\right)$, then which of the
29. following must be true
A. $x y=z$.
B. $x y=2 z$.
C. $x y=z^{2}$.
D. $x^{y}=z$.
E. $x^{y}=2 z$.
86. $\left(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}\right)^{2}=$
A. $\frac{(x+y)^{2}}{x y}$.
B. $\frac{x^{2}+y^{2}}{x y}$.
C. $\frac{x+y+2}{x y}$.
D. $\frac{x+y}{x y}$.
E. 1 .

86 The L.C.M. of $12 a^{2} b$ and $18 a b^{3} c$ is
31.
A. $6 a b$.
B. $6 a^{2} b^{3} c$.
C. $36 a b$.
D. $36 a^{2} b^{3} c$.
E. $216 a^{3} b^{4} c$.

86
32.

Let $p=2 x+3 y$. Under the following constraints

$$
\left\{\begin{array}{c}
x \geq 0 \\
y \geq 0 \\
x \leq 4 \\
y \leq 3 \\
x+y \leq 6
\end{array}\right.
$$

what is the greatest value of p ?
A. 8 .
B. 14 .
C. 15 .
D. 16 .
E. 17 .

86 If $\log x^{2}+\log y^{2}=\log z^{2}$, where x, y
33. and z are positive numbers, which of the following must be true?
I. $x^{2}+y^{2}=z^{2}$.
II. $\log x+\log y=\log z$
III. $x^{2} y^{2}=z^{2}$
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

86 Let $\mathrm{F}(x)=2 x^{3}+3 x^{2}-11 x-6$. Given
34. that $\mathrm{F}(2)=0$ and $\mathrm{F}(-3)=0$, then $\mathrm{F}(x)$ can be factorized as
A. $(x+2)(x-3)(2 x+1)$.
B. $(x+2)(x-3)(2 x-1)$.
C. $(x-2)(x+3)(2 x+1)$.
D. $(x-2)(x-3)(2 x+1)$.
E. $(x-2)(x+3)(2 x-1)$.

86 If a, b and c are positive numbers,
35. which of the following is a possible graphical representation of $y=a x^{2}+b x+c$
A.

B.

C.

D.

E.

86 If $a>0$ and $b<0$, which of the 36. following is/are negative?
I. $\frac{1}{a}-\frac{1}{b}$
II. $\frac{a}{b}+\frac{b}{a}$
III. $\frac{a^{2}}{b}-\frac{b^{2}}{a}$
A. I only
B. III only
C. I and II only
D. I and III only
E. II and III only

86 If $2<x<3$ and $3<y<4$, then the
37. range of values of $\frac{x}{y}$ is
A. $\frac{1}{2}<\frac{x}{y}<\frac{3}{4}$.
B. $\frac{1}{2}<\frac{x}{y}<1$.
C. $\frac{2}{3}<\frac{x}{y}<\frac{3}{4}$.
D. $\frac{2}{3}<\frac{x}{y}<1$.
E. $\frac{4}{3}<\frac{x}{y}<\frac{3}{2}$.

86
38.

$A B C D E F G H$ is a cube of side 3 cm . A tetrahedron $D A C H$ is cut away along the plane $A C H$. The volume of the remaining solid is
A. $6 \mathrm{~cm}^{3}$.
B. $9 \mathrm{~cm}^{3}$.
C. $\quad 13.5 \mathrm{~cm}^{3}$.
D. $18 \mathrm{~cm}^{3}$.
E. $\quad 22.5 \mathrm{~cm}^{3}$.

86 The marked price of an article is
39. originally P. The marked price is then increased so that when a discount of 10% is made on the new marked price, the selling price is still P. What is the new marked price?
A. $\frac{9}{10} P$.
B. $\frac{109}{100} P$.
C. $\frac{11}{10} P$.
D. $\frac{111}{100} P$.
E. $\frac{10}{9} P$.

86
40.

The total surface area of a regular tetrahedron of side 3 cm is
A. $\frac{9 \sqrt{3}}{4} \mathrm{~cm}^{2}$.
B. $9 \mathrm{~cm}^{2}$.
C. $\frac{27 \sqrt{3}}{4} \mathrm{~cm}^{2}$.
D. $9 \sqrt{3} \mathrm{~cm}^{2}$.
E. $\quad 12 \sqrt{3} \mathrm{~cm}^{2}$.

86 Ten litres of a mixture contain 60% of 41. alcohol and 40% of water by volume. How many litres of water should be added so that it contains 30% of alcohol by volume?
A. 5 .
B. 10 .
C. 15 .
D. 20 .
E. 30 .

86 If A, B, and C can finish running the
42. same distance in 3, 4 and 5 minutes respectively, then A 's speed : B 's peed : C 's speed $=$
A. $3: 4: 5$
B. $5: 4: 3$
C. $9: 8: 7$
D. $20: 15: 12$
E. $25: 16: 9$

86 If the five interior angles of a convex
43. pentagon from an A.P. with a common difference of 10°, then the smallest interior angle of the pentagon is
A. 52°
B. 72°
C. 88°
D. 98°
E. 108°

86 Let p be a positive constant such that
44. $p \sin \theta=\sqrt{3}$ and $p \sin \theta=1$. Find all the values of θ in the interval 0 to 2π.
A. $\frac{\pi}{3}$.
B. $\frac{\pi}{6}$.
C. $\frac{\pi}{3}, \frac{4 \pi}{3}$
D. $\frac{\pi}{6}, \frac{7 \pi}{3}$
E. Cannot be determined

86
45.

In $\triangle A B C, A B=2, A C=3$ and
$\sin B=\frac{3}{4}$, then $\cos ^{2} C=$
A. $\frac{9}{16}$.
B. $\frac{9}{13}$.
C. $\frac{1}{4}$.
D. $\frac{1}{2}$.
E. $\frac{3}{4}$.

86
46.

In the figure, $B D: D C=$
A. $\sin C: \sin B$.
B. $\cos C: \cos B$.
C. $\tan C: \tan B$.
D. $\sin B: \sin C$.
E. $\cos B: \cos \mathrm{C}$.

In the figure, $A B C D$ is a square. Arcs $A C$ and $B D$ are drawn with centres D and C respectively, intersecting at O.
$\operatorname{Arc} A O: \operatorname{Arc} O C=$
A. $1: \sqrt{2}$
B. $1: \sqrt{3}$.
C. $1: 2$.
D. $1: 3$.
E. 2:3.

86
48.

In the figure, $A B C D$ and $E F G H$ are two squares of side 1. They are placed one upon the other with their centres both at O to form a star with 16 sides, each of length x. Find x.
A. $\frac{2}{7}$.
B. $\frac{1}{3}$.
C. $\frac{2}{5}$
D. $\frac{1}{2+\sqrt{2}}$.
E.

$$
\frac{1}{1+\sqrt{2}} .
$$

86 49.

$D A$ and $D C$ are equal chords of the circle $A B C D . \angle C D B=40^{\circ}$ and $\angle D A B$
$=100^{\circ} . \angle A D B=$
A. 20°.
B. 25°.
C. 30°.
D. 35°.
E. 40°.

86
50.

In the figure, $A B$ and $A C$ are tangents to the circle $B C D$. If $\angle B D C=50^{\circ}$, then $\angle A=$
A. $\quad 130^{\circ}$.
B. 100°.
C. 85°.
D. 80°.
E. 50°.
51.

In $\triangle A B C, A P=3, A Q=6$ and $Q C=4$. If $\angle A P Q=\angle A C B$, then $P B=$
A. 7 .
B. 8 .
C. 10 .
D. 17 .
E. 20 .

86
52.

Three circles, centres A, B and C touch each other as shown in the figure. The radii of the two circles with centre A and B are both 1 cm and radius of the circle with centre C is 3 cm . Find the area of the shaded part in cm^{2}.
A. $\sqrt{3}-\frac{\pi}{3}$.
B. $\sqrt{3}-\frac{\pi}{6}$.
C. $2 \sqrt{3}-\frac{\pi}{3}$.
D. $2 \sqrt{3}-\frac{\pi}{6}$.
E. It cannot be determined

A circle, centre O, touches the sector $A B C$ internally at D, E and $F . \angle C=$ 60° and $A C=18$. Find the radius of the circle.
A. 9 .
B. 6 .
C. 5 .
D. 4 .
E. 3 .

In the figure, $P Q$ is a diameter and $P T$ is a tangent of the circle. $Q T$ cuts the circle at R. Let $\angle Q=\theta$ and $P Q=x$, then $T R=$
A.

$$
\frac{x}{\cos \theta} .
$$

B.
$\frac{x}{\sin \theta}$.
C.

$$
\frac{x}{\sin \theta \tan \theta}
$$

D. $x \sin \theta \tan \theta$.
E. $x \cos \theta \tan \theta$.

53.

