Form 5

HKCEE 1985 Mathematics II

4.

 $\begin{array}{ccc} 85 & 2 \\ 1. & \frac{2}{1+x} - \frac{2}{1-x} - \frac{4x}{x^2 - 1} \end{array}$ A. $\frac{1}{1-x}$ $\frac{1}{1+x}$ B. C. $\frac{1-7x}{x^2-1}$ D. $\frac{1-7x}{1-x^2}$ E. $\frac{3x+1}{1-x^2}$ $\overset{85}{2.} \quad \frac{\frac{b}{a} - \frac{a}{b}}{\frac{1}{a} - \frac{1}{b}} =$ A. a+bB. a-bC. -a+bD. –*a* – *b* E. $\frac{1}{a} + \frac{1}{b}$ If $\frac{ab}{ka+b} = \frac{1}{k}$, then b =85 3. А. а $\overline{a-k}$ ka B. *ka*−1 ka C. 1-kaD. k^2a $\overline{a-k}$ k^2a E. $\overline{k-a}$

85
$$(x + y)^{-1}(x^{-2} - y^{-2}) =$$

4.
A. $\frac{1}{x^3} - \frac{1}{y^3}$
B. $\frac{1}{x^2y} - \frac{1}{xy^2}$
C. $\frac{1}{xy^2} - \frac{1}{x^2y}$
D. $\frac{1}{x^2} - \frac{1}{y^2}$
E. $\frac{1}{x^2y} + \frac{1}{xy^2}$

85 If
$$a - \sqrt{b^2 + c^2} = d$$
, then $c = 5$.

A.
$$d-a+b$$

B. $a-d-b$
C. $\pm \sqrt{d^2-a^2+b^2}$
D. $\pm \sqrt{a^2-d^2-b^2}$
E. $\pm \sqrt{(a-d)^2-b^2}$

85 The L.C.M. of
$$2a^2 - 2b^2$$
 and
6. $a^3 - 2a^2b + ab^2$ is

A.
$$a-b$$

B. $(a-b)(a+b)$
C. $2a(a-b)(a+b)$
D. $2a(a-b)^{2}(a+b)$
E. $2a(a-b)^{3}(a+b)$

85 Let *a* and *b* be constants. If 7. $3x^3 - ax^2 + 5x - 3b$ is divisible by x + 3then 3a + b =

- A. -32
- B. -22
- C. 22
- 32 D.
- E. It cannot be determined

$$85 \quad \log_{10}(a^2 - b^2) = 8.$$

A. $\frac{\log_{10} a}{\log_{10} b}$

- B. $2\log_{10}(a-b)$
- C. $2\log_{10}a 2\log_{10}b$
- D. $\log_{10}(a+b) + \log_{10}(a-b)$
- E. $(\log_{10}a + \log_{10}b)(\log_{10}a \log_{10}b)$
- 85 If α and β are roots of $x^2 + 2x 4 = 0$, 9. then $2^{\alpha} \cdot 2^{\beta} =$

A.	1
	16
B.	1
	4
C.	2
D.	4
_	

- E. 16
- 85 The second term and the fifth term of a
- 10. geometric progression are -12 and $40\frac{1}{2}$ respectively. The first term is
 - A. $1\frac{1}{2}$ B. 6 C. 8 D. 15
 - E. 18
- 85 If a: b = 1: 2 and b: c = 1: 3, then 11. a + b: b + c =
 - A. 1:5
 - B. 2:3
 - C. 3:4
 - D. 3:5
 - E. 3:8

- 85 A hawker bought 120 apples and the
- 12. cost was \$90. It was found that $\frac{1}{8}$ of the apples were rotten and could not be sold. He sold the rest at \$1 each. What percentage of the cost was his profit?

A.
$$11\frac{1}{9}\%$$

B. $14\frac{2}{7}\%$
C. $16\frac{2}{3}\%$
D. $28\frac{4}{7}\%$
E. $33\frac{1}{3}\%$

- 85 The marked price of a book is double
- 13. that of its cost. In a sale, what percentage discount was given if the profit made was 20% of the cost?
 - A. 10%
 B. 20%
 C. 30%
 D. 40%
 - E. 50%
- 85 John spends 40 minutes to walk from
- 14. his home to school. If he increases his walking speed by 2 km/h, then it takes only 30 minutes. What is the distance between John's home and his school?
 - A. 1 km
 - B. 4 km
 - C. 6 km
 - D. 8 km
 - E. 12 km
- 85 60% of the students in a school are
- 15. boys. 70% of the boys and 40% of the girls wear glasses. If 696 students wear glasses, how many students are there in the school?
 - A. 1200

- B. 1050C. 868D. 849E. 800
-) **E**

85 16.

In the figure, a regular hexagon of side 2 cm is inscribed in a circle. The area of the circle is greater than the area of the hexagon by

A.	$(3\pi - 6) \text{ cm}^2$
В.	$(3\pi - 3\sqrt{3}) \text{ cm}^2$
C.	$(4\pi - 6) \text{ cm}^2$
D.	$(4\pi - 3\sqrt{3}) \text{ cm}^2$
E.	$(4\pi - 6\sqrt{3})$ cm ²

$$\begin{array}{l} 85\\ 17. \end{array} \quad \tan \, \theta \, (\frac{1}{\sin \theta} - \sin \, \theta) = \end{array}$$

A. 1
B.
$$\cos \theta$$

C. $\sin \theta$

D.
$$\frac{1}{\cos\theta}$$

E.
$$\frac{1}{\sin\theta}$$

85
18. If
$$\tan \theta = \frac{2ab}{a^2 - b^2}$$
 and $0^\circ < \theta < 90^\circ$,
then $\cos \theta =$

A.
$$\frac{a^2 + b^2}{a^2 - b^2}$$

B.
$$\frac{a^2 - b^2}{a^2 + b^2}$$

C.
$$\frac{a^2 - b^2}{\sqrt{a^2 + b^2}}$$

In the figure, AB = 2 and AC = 5, BC =

A.	$\sqrt{39}$
B.	$\sqrt{29}$
C.	$\sqrt{24}$
D.	$\sqrt{20}$
E.	$\sqrt{19}$

85 In $\triangle ABC$, $\angle A = 30^{\circ}$, AB = 6 cm. If the

- 20. area of $\triangle ABC$ is 15 cm², AC =
 - A. 2.5 cm
 B. 5 cm
 C. 10 cm
 D. 12 cm
 E. 15 cm

In the figure, BCX is a straight line. AC = 1, AB =

A. $2 \sin 20^{\circ}$ B. $2 \cos 20^{\circ}$ C. $\sqrt{2} \cos 20^{\circ}$

85-CE-MATHS II

85

21.

D.
$$\frac{1}{2\sin 20^{\circ}}$$
E.
$$\frac{\sqrt{3}}{2\sin 20^{\circ}}$$

In the figure, ABCD is a cyclic quadrilateral. BA is produced to E. DA bisects $\angle CAE$. $\angle BCD =$

- 40° A.
- 45° Β.
- C. 50°
- 55° D.
- 65° E.
- The exterior angles of a pentagon are 85 x° , $2x^{\circ}$, $3x^{\circ}$, $4x^{\circ}$, $5x^{\circ}$. 23. The smallest

interior angle of the pentagon is

- 120° A.
- 60° B.
- 48° С.
- 36° D.
- 24° E.

85 24.

In the figure, A, D, E and B lie on a straight line. CE bisects $\angle ACB$ and CD $\perp AB. \ \angle DCE =$

A.
$$\frac{1}{2}(x^{\circ} - y^{\circ})$$

B. $\frac{1}{2}(x^{\circ} + y^{\circ})$
C. $x^{\circ} - y^{\circ}$
D. $90^{\circ} - \frac{1}{2}(x^{\circ} + y^{\circ})$
E. $90^{\circ} - (x^{\circ} - y^{\circ})$

In the figure, ABCD is a rhombus B is the centre of the circle. $\angle ABC =$

A.	105°
B.	120°
	0

85

25.

- C. 130°
- D. 135°
- 150° E.
- 85 The distance between (1 - k, k) and

26.
$$(2, 1+k)$$
 is $\sqrt{26}$, $k =$

- A. 4 6 Β. C. -4 or 6 D.
- 4 or -6
- E. -4 or -6
- 85 The equation of the perpendicular
- 27. bisector of the line joining (1, 2) and (7, 4) is

A. 3x + y + 15 = 0

- B. 3x + y - 15 = 0
- C. 3x - y + 9 = 0
- D. 3x - y - 9 = 0
- E. x + 3y - 13 = 0

In the figure, the circle passes through (0, 0) and cuts the two axes at (6, 0)and (0, -8). Its equation is

- A. $x^2 + y^2 3x + 4y = 0$ B. $x^2 + y^2 + 3x - 4y = 0$ C. $x^2 + y^2 + 6x - 8y = 0$ D. $x^2 + y^2 - 6x + 8y = 0$ $x^2 + y^2 - 6x - 8y = 0$ E.
- 85 The equation of a circle is
- $x^2 + y^2 4x 5 = 0$. Which of the 29. following is/are true?
 - I. The circle passes through the origin.
 - The centre lies on the *x*-axis. II.
 - III. The line x - 5 = 0 touches the circle.
 - A. II only
 - B. III only
 - C. I and II only
 - II and III only D.
 - I, II and III E.

85	Class mid-value	Frequency
30.		
	m-8	3
	m-4	1
	т	2
	<i>m</i> + 4	6

The mean of the above distribution is

A.
$$m - \frac{1}{3}$$

Β. $m-\frac{1}{2}$ C. m-2D. m-4E. т

There are four balls, numbered 1, 2, 5 85 31. and 10 in a bag. If 2 balls are taken out at random, the probability that the sum of the numbers on the two balls drawn is greater than or equal to 7 is

A.	1
	2
В.	5
	8
C.	2
	3
D.	3
	4
E.	5
	6

85	Two dice are thrown.	The probability
32.	of getting at least one "	6" is

A.	1
	6
B.	1
	$\overline{3}$
C.	11
	36
D.	25
	36
E.	35

- - 36

In the figure, P and Q are the cumulative frequency curves for the heights of two groups of students, each having 100 students. Which of the following must be true?

- I. range of P < range of Q
- II. median of P < median of Q
- III. the 3^{rd} quartile of $P < the 3^{rd}$ quartile of Q
- A. I only
- B. II only
- C. I and II only
- D. I and III only
- E. I, II and III

In the figure, P and Q are curves showing the distribution of weights of students in two schools, each having the same number of students. Which of the following must be true?

- I. standard deviation of P > standard deviation of Q
- II. mode of P > mode of Q
- III. median of P > median of Q

- A. I only
- B. I and II only
- C. I and III only
- D. II and III only
- E. I, II and III

In the figure, the equation of the curve is $y = (x - 2)^2 - 1$. The curve intersects the *x*-axis at *A* and *B*. *C* is the vertex of the curve. The area of $\triangle ABC$ is

- A. 1
 B. 1.5
 C. 2
 D. 2.5
- E. 3
- 85 Which of the following is the solution 36. of $(x-1)(x-3) \le 0$ and $x-2 \le 0$
 - A.
 $x \le 2$

 B.
 $x \le 3$

 C.
 $2 \le x \le 3$

 D.
 $1 \le x \le 2$

 E.
 $1 \le x \le 3$

85 37.

Which of the following systems of inequalities determine the shaded region in the figure?

A.
$$\begin{cases} x \ge 1\\ x + y \ge 1\\ x \ge y \end{cases}$$

B.
$$\begin{cases} x \ge 1\\ x + y \le 1\\ x \ge y \end{cases}$$

C.
$$\begin{cases} x \le 1\\ x + y \le 1\\ x \le y \end{cases}$$

D.
$$\begin{cases} x \le 1\\ x + y \le 1\\ x \ge y \end{cases}$$

E.
$$\begin{cases} x \le 1\\ x + y \ge 1\\ x \ge y \end{cases}$$

A.
$$b^2 = ac$$

B. $b^2 = \frac{1}{ac}$
C. $b^2 = \frac{a+c}{2}$
D. $b^2 = \frac{a+c}{2ac}$
E. $b^2 = \frac{2ac}{a+c}$

- 85 Three distinct numbers *x*, *y* and *z* are in39. arithmetic progression. Which of the following is/are also in arithmetic progression?
 - I. x + 10, y + 10, z + 10II. 10x, 10y, 10z
 - II. 10x, 10y, 10III. x^2, y^2, z^2
 - A. I and II only
 - B. I and III only

- C. II and III only D. I, II and III
- E. None of I, II and III

85 If
$$f(2x) = 8x^3 + 4x$$
, then $f(3a) = 40$.

- A. $9a^{3} + 6a$ B. $12a^{3} + 6a$ C. $27a^{3} + 6a$ D. $108a^{3} + 6a$ E. $216a^{3} + 12a$
- 85 A number is first reduced by p% and
- 41. then increased by x%. If the number so obtained is the same as the original number then x =

A.
$$p$$

B. $\frac{p}{100}$
C. $\frac{p}{1-p}$
D. $\frac{100}{100-p}$
E. $\frac{100p}{100-p}$

- 85 The length and width of a cuboid are42. each increased by 10% and the height remains unchanged. The percentage increase in volume is
 - A. 10%
 - B. 20%
 - C. 21%
 - D. 24%
 - E. 33%
- 85 A cone of base radius 2r cm and height
 43. h cm has a volume of 60 cm³. The volume of a cylinder of base radius r cm and height 4h cm is
 - A. 60 cm^3 B. 120 cm^3 C. 180 cm^3
 - D. 240 cm^3

85 44.

In the figure, the volumes of the pyramids *VABC* and *VPQR* are 27 cm³ and 64 cm*3* respectively. Planes *ABC* and *PQR* are parallel. Area of $\triangle ABC$: Area of $\triangle PQR$ =

- A. $\sqrt{27} : \sqrt{64}$ B. $\sqrt{37} : \sqrt{64}$ C. 3 : 4D. 9 : 16
- E. 27:64

The figure shows the graph of

A. $y = 3\cos x^{\circ}, 0 \le x \le 360$

- $B. \quad y = 3\sin x^{\circ}, \ 0 \le x \le 360$
- C. $y = 2 + \sin x^{\circ}, 0 \le x \le 360$
- D. $y = 2 + \cos x^{\circ}, 0 \le x \le 360$
- E. $y = 3 + \sin x^{\circ}, 0 \le x \le 360$

85 If $0^{\circ} \le \theta \le 360^{\circ}$, then the largest value 46. of $2\sin 2\theta + \cos 2\theta + 2$ is

In the figure, *BCD* is a straight line AD = p, then BC =

A

р

D

A. $p \tan (\beta - \alpha)$ B. $p (\tan \alpha - \tan \beta)$ C. $p (\tan \beta - \tan \alpha)$ D. $p(\frac{1}{\tan \alpha} - \frac{1}{\tan \beta})$ E. $p(\frac{1}{\tan \beta} - \frac{1}{\tan \alpha})$

In the figure, *AB* is a diameter of the circle *ABC*. If arc *AC* has the same length as *AB*, then $\angle CAB =$

A. $\frac{\pi}{2}$ radians B. $(\frac{\pi}{2} - \frac{1}{2})$ radians C. $(\frac{\pi}{2} - 1)$ radians

85 48.

D.
$$(\frac{\pi}{2} - 2)$$
 radians
E. $(\pi - \frac{1}{2})$ radians

85 49.

In the figure, $\angle CAB = \angle CBD = 90^{\circ}$. BC = 2. The area of quadrilateral ABCD =

- A. $2\sin(\alpha + \beta)$
- B. $2(\tan \alpha + \tan \beta)$
- C. $2(\sin \alpha \cos \alpha + \sin \beta \cos \beta)$
- D. $2(\tan \alpha + \sin \beta \cos \beta)$
- E. $2(\sin \alpha \cos \alpha + \tan \beta)$
- 85

In the figure, $\angle C = 90^{\circ}$. *P* and *Q* are points on *BC* such that BP = PQ = QC. $\angle CAQ =$

- A. 30°
- B. 25°
- C. 22°
- D. 20°
- E. 15°

In the figure, *ABCD* is a rectangle. *E* is a point on *BC* such that $\angle AED = 90^{\circ}$. *AD* = 13 and *DE* = 5. The area of *ABCD* =

A. 30
B. 52
C. 60
D. 65

85

51.

E. 120

85

52.

In the figure, *ABCD* is a rectangle *E*, *F*, *G* and *H* are points on the four sides such that EF // DB // GH. AF = FB and HC = 2BH. What fraction of the area of *ABCD* is shaded?

A.	13
	36
В.	_5
	12
C.	25
	36
D.	25
	72
E.	47
	72

In the figure, *FG* touches the circle at *E*. The chord *CB* is produced to meet *FG* at *A*. $\angle ACE =$

A. 10°

- B. 20°
- C. 25°
- D. 30°
- E. 35°

In the figure the circle touches the sides of $\triangle ABC$ at *X*, *Y* and *Z*. *O* is the centre of the circle. Which of the following must be true?

- I. OA bisects $\angle BAC$
- II. A, X, O and Z are concyclic
- III. AX = AZ
- A. III only
- B. I and II only
- C. I and III only
- D. II and III only
- E. I, II and III