Form 5

HKCEE 1982 Mathematics II

82
1.
$$\frac{2a}{a^2 - 4b^2} + \frac{1}{2b - a} =$$

A. $\frac{1}{a + 2b}$
B. $\frac{2a - 1}{(a + 2b)(a - 2b)}$
C. $\frac{2a + 1}{(a + 2b)(a - 2b)}$
D. $\frac{3a + 2b}{(a + 2b)(a - 2b)}$
E. $\frac{a + 2b}{(a + 2b)(a - 2b)}$
82
2. $\frac{8^{2x} \cdot 4^{3x}}{2^x \cdot 16^{2x}} =$
A. 2^{3x}
B. 2^{2x}
C. 2^x
D. 8
E. 1
82
($a^{-2} - 3b^{-1})^{-1} =$
3. A. $\frac{3a^2 + b}{a^2b}$
B. $\frac{3a^2 - b}{a^2b}$
C. $\frac{3b - a^2}{a^2b}$
D. $\frac{3a^2b}{b - 3a^2}$
E. $\frac{3a^2b}{3b - a^2}$

82
4. If
$$x = \frac{1}{\frac{1}{y} + \frac{2}{z}}$$
, then $y = \frac{1}{\frac{1}{y} + \frac{2}{z}}$

A.
$$\frac{2x}{z}$$

B.
$$\frac{z}{xz-z}$$

C.
$$\frac{z-2x}{xz}$$

D.
$$\frac{xz}{2x+z}$$

E.
$$\frac{xz}{z-2x}$$

82 If $10^{kx+a} = P$, then x = 5.

A.
$$\frac{1}{k}(10^{P-a})$$

B.
$$\log_{10}\frac{P-a}{k}$$

C.
$$\frac{1}{k}\log_{10}P-a$$

D.
$$\frac{1}{k}(\log_{10}P-a)$$

E.
$$\frac{1}{k}(\log_{10}P+a)$$

82 α and β are the roots of the equation 6. $x^2 - 5x - 7 = 0$. What is the equation

whose roots are $\alpha + 1$ and $\beta + 1$?

- A. $x^2 3x + 3 = 0$ B. $x^2 - 3x - 11 = 0$ C. $x^2 - 5x + 1 = 0$ D. $x^2 - 7x - 1 = 0$ E. $x^2 - 7x - 7 = 0$
- 82 What are the roots of the equation
- 7. $(x-3)^2(x+1) = -(x+1)^2(x-3)?$
 - A. 1 only
 - B. 1, -3 only
 - C. -1, 3 only

- D. 1, -1, -3 E. 1, -1, 3
- 82 $5 9x 2x^2 > 0$ is equivalent to 8.

A.
$$x > \frac{1}{2}$$

B. $x < -5$
C. $-5 < x < \frac{1}{2}$
D. $x < -5$ or $x > \frac{1}{2}$
E. $x > -5$ or $x < \frac{1}{2}$

82 What will \$P amount to in 3 years'9. time. If interest is compounded monthly at 12% per annum?

A.
$$\$P(1 + \frac{36}{100})$$

B. $\$P(1 + \frac{1}{100})^{36}$
C. $\$P(1 + \frac{12}{100})^{36}$
D. $\$P(1 + \frac{12}{100})^{3}$
E. $\$P(1 + \frac{1}{100})^{3}$

⁸² A child spent $\frac{1}{10}$ of his saving on a shirt and $\frac{1}{5}$ of his savings on a pair of trousers. He then spent 30% of the rest of his savings on books. What percentage of his saving did he spend altogether?

- A. 49.6%
- B. 50.4%
- C. 51%
- D. 58%
- E. 60%

- 82 The rent of a flat is raised by 30% every
- 11. two years beginning from a fixed date. Counting from that date, after how many years will the rent just exceed twice the original rent?
 - A. 4 years
 - B. 5 years
 - C. 6 years
 - D. 7 years
 - E. Over 7 years
- 82 A man drives 20 km at 40km/h. At
- 12. what speed must he drive on his return journey so that the average speed for the double journey is 60 km/h?
 - A. 50 km/h
 B. 80 km/h
 C. 100 km/h
 D. 120 km/h
 - E. 160 km/h
- 82 The marked price of a book is \$240. If
- 13. the book is sold at a discount of 20%, the profit will be 20% of the cost price. What is the cost price of the book?
 - A. \$153.6
 B. \$160
 C. \$192
 D. \$200
 E. \$240
- 82 A right circular cone of altitude 3r and
- 14. base radius *r* has the same volume as a cube of side *x*. *x* =
 - A. πr^3 B. πr C. $\frac{1}{3}\pi r$ D. $\sqrt[3]{3\pi}r$ E. $\sqrt[3]{\pi}r$

- 82 Some air escapes from a spherical
- 15. balloon of volume a^3 . The balloon keeps its spherical shape and is now of volume b^3 . What is the percentage decrease in the radius?

A.
$$\frac{a-b}{a} \times 100\%$$

B.
$$\frac{a-b}{b} \times 100\%$$

C.
$$\sqrt[3]{\frac{a^3-b^3}{a^3}} \times 100\%$$

D.
$$\sqrt[3]{\frac{a^3-b^3}{b^3}} \times 100\%$$

E.
$$\frac{a^3-b^3}{a^3} \times 100\%$$

- 82 Coffee *A* and coffee *B* are mixed in the
- 16. ratio 1 : 2. A profit of 20% on the cost price is made by selling the mixture at \$36/kg. If the cost price of *A* is \$12/kg, what is the cost price of *B*?
 - A. \$18/kg
 - B. \$24/kg
 - C. \$39/kg
 - D. \$48/kg
 - E. \$66/kg

82
$$(\sin \theta + \cos \theta)^2 - 1 =$$

17.

A. 0 B. 1 C. $2\cos^2\theta$

- D. $2 \sin\theta \cos\theta$
- E. $-2\sin\theta\cos\theta$
- 82 18. If $\tan x = -\frac{3}{4}$ and x is an angle in the second quadrant, what is the value of $\sin x + \cos x$?

A.
$$-\frac{7}{5}$$

B.
$$-\frac{1}{5}$$

C. $\frac{1}{5}$
D. 1
E. $\frac{7}{5}$

82 If $A + B = 180^{\circ}$, which of the following 19. is/are true?

I. $\sin A = \sin B$

II. $\cos A = \cos B$

III. $\tan A = \tan B$

- A. I only
- B. II only
- C. III only
- D. I, II and III
- E. None of them
- 82 From the top of a lighthouse, *h* metres
 20. high, the angle of depression of a boat is 20°. How far is the boat from the base of the lighthouse, which is at sea
 - level? A. $h \sin 20^{\circ} \text{ m}$ B. $h \cos 20^{\circ} \text{ m}$ C. $h \tan 20^{\circ} \text{ m}$ D. h

E.
$$\frac{h}{\sin 20^\circ}$$
 m

82

21.

In the figure, *OAB* is a right-angled triangle in a horizontal plane with $\angle AOB = 90^{\circ}$. *OC* is a vertical line. If OB = r, AC =

A.	$r \sin \beta$
	$\tan \alpha$
B.	$r \tan \alpha$
	$\cos\beta$
C.	$r \sin \beta$
	$\sin \alpha$
D.	$r\cos\beta$
	$\tan \alpha$
E.	$r \tan \beta$
	$\cos \alpha$

- 82 In a circle, the angle of a sector is 30° 22. and the radius is 2 cm. The area of the
 - 22. and the radius is 2 cm. The area of the sector is
 - A. 120 cm^2 B. 60 cm^2 C. $\frac{30}{\pi} \text{ cm}^2$ D. $\frac{2\pi}{3} \text{ cm}^2$ E. $\frac{\pi}{3} \text{ cm}^2$

In the figure, OACB is a sector of a circle of radius 6 cm. Arc ACB is longer than the chord AB by

- A. $(\pi 3)$ cm
- B. $2(\pi 3)$ cm
- C. $3(\pi 1)$ cm
- D. $6(\pi 1)$ cm

E. $3(2\pi - \sqrt{3})$ cm

82

24.

In the figure, x =

- A. a-bB. $a+b-180^{\circ}$ C. $a+b-90^{\circ}$ D. $180^{\circ}-a+b$ E. 260°
- E. $360^{\circ} a b$

In the figure, *ABCD* is a square and *PAB* is an equilateral triangle. $\angle CPD =$

 $\begin{array}{rrrr} A. & 20^{\circ} \\ B. & 25^{\circ} \\ C. & 30^{\circ} \\ D. & 32^{\circ} \\ E. & 36^{\circ} \end{array}$

In the figure, D is a point on BC such that AD = CD and AB = AC = BD. $\angle B =$

82

26.

- A. $22\frac{1}{2}^{\circ}$ 30° B. 36° С. 45° D.
- 60° E.

In the figure, AKC and BKD are two chords of the circle. $\angle CBD =$

A.
$$a-b$$

B. $a+b$
C. $a+b-90^{\circ}$
D. $\frac{1}{2}a$
E. $\frac{1}{2}a+b$

In the figure, PQ and RS touch the circle at A and C respectively. $\angle ABC =$

- 48° A.
- 60° Β.
- 84° C.
- 90° D.
- E. 96°

82 If f(x) = 5x + 1, then f(x + 1) - f(x) =29.

> A. 1 B. 6 C. $4 \cdot 5^x$ $5 \cdot 5^x$ D. $4 \cdot 5^{x} + 1$ E.

 $\log_{10}(x^{\log_{10} x}) =$ 82 30.

- $(\log_{10} x)^2$ A. $\log_{10}(x^2)$
- Β. C. $x \log_{10} x$
- D.
- $\log_{10}(\log_{10}x)$
- E. 10^{x^2}

82 The graphs of $y = \frac{x^2}{2}$ and y = x + 231. intersect at the points (x_1, y_1) and Which of the following $(x_2, y_2).$ equations has roots x_1 and x_2 ?

> A. $x^2 - x - 2 = 0$ B. $x^2 + x + 2 = 0$ C. $x^2 - 2x - 4 = 0$ D. $x^2 - 4x - 8 = 0$ $2x^2 - x - 2 = 0$ E.

Let a > 2. The inequality 82

32. 2x - 2a < ax + 5a is equivalent to

A.
$$x > \frac{7a}{2-a}$$

B.
$$x < \frac{7a}{2-a}$$

C.
$$x > \frac{-3a}{2-a}$$

D.
$$x < \frac{-3a}{2-a}$$

E.
$$x > \frac{-7a}{2-a}$$

82
33. If
$$\begin{cases} x \ge 0, \\ y \ge 0, \\ x + y \le 5, \\ 2x + y \ge 4, \\ x \ge y, \end{cases}$$

in which of the following shaded regions do all the points satisfy the above inequalities?

82 *a*, *b* and *k* are real numbers. If *k* > 0
34. and *a* > *b*, which of the following must be true?

I. $a^2 > b^2$ II. -a < -b

III.
$$ka > kb$$

- A. II only
- B. III only
- C. I and III only
- D. II and III only
- E. I, II and III

82 \$9000 is divided among A, B and C.

35. *A*'s share, *B*'s share and *C*'s share, in that order, form an arithmetic progression. If *B*'s share is three times *A*'s share, how much does *C* get?

A.	\$1500
B.	\$3000
C.	\$4500

- D. \$5000
- E. \$6000

- 82 1, -0.1, 0.01, -0.001, ... is a geometric
- 36. progression. What is its sum to infinity?
 - A. 0 B. 1
 - D. 1 C. 0.99
 - D. 10
 - E. $\frac{\overline{11}}{9}$
- 82 If $x \neq 0$, which of the following is/are 37. geometric progression?
 - I. x, x^2, x^3, x^4 II. x, 2x, 3x, 4x,III. $x, -x^2, x^3, -x^4$
 - A. I only
 - B. I and II only
 - C. I and III only
 - D. II and III only
 - E. I, II and III
- 82 The average of x and y is a, the average
- 38. of *y* and *z* is *b*, and the average of *x* and *z* is *c*. What is the average of *x*, *y* and *z*?

A.
$$\frac{1}{6}(a+b+c)$$

B. $\frac{1}{3}(a+b+c)$
C. $\frac{1}{2}(a+b+c)$
D. $\frac{2}{3}(a+b+c)$
E. $\frac{3}{2}(a+b+c)$

In the figure an equilateral triangle is inscribed in a circle of radius *a*. What is the area of the triangle?

82 39.

82

40.

Four identical trapeziums, each of area 16 cm^2 , are drawn inside a square of side 10 cm as shown in the figure. What is the height of each trapezium?

A.	$\frac{1}{2}$ cm
В.	1 cm
C.	2 cm
D.	3 cm
E.	4 cm

The perimeter of the given figure *ABCDE* is $2(\pi + 4)$ cm. The upper portion *AED* is a semi-circle and the lower portion *ABCD* is a rectangle. *AB* : *BC* = 1 : 2. What is the area of the given figure?

A. 8 cm^2

B.
$$2\pi \text{cm}^2$$

C.
$$4\pi$$
 cm²

D.
$$4(\pi + 2)$$
 cm²

E.
$$2(\pi + 4)$$
 cm²

82 42.

In the figure, the two concentric circles are of radius 2 cm and 4 cm respectively. Each circle is divided into 6 equal parts by 6 radii. What is the area of the shaded region?

A.	12π	cm^2

B.
$$10\pi$$
 cm²

- C. 9π cm²
- D. 6π cm²
- E. 2π cm²

In the figure, the rectangles are similar. PQ = a, QR = b. If AC = 2PR, what is the area of *ABCD*?

A.
$$2ab$$

B. $4ab$
C. $2(a^2 + b^2)$
D. $2(a + b)\sqrt{a^2 + b^2}$
E. $2ab\sqrt{a^2 + b^2}$

The above figure shows the graph of $y = a \cos x + 1$ for $0 \le x \le \pi$. a =

A. -1 B. 0 C. 1

D. 2 E. 3

$$\frac{82}{45.} \quad \frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} + \frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta}$$

A. 2 B. $4 \sin \theta \cos \theta$ C. $\frac{2 \sin \theta \cos \theta}{\sin^2 \theta - \cos^2 \theta}$ D. $\frac{4 \sin \theta \cos \theta}{\sin^2 \theta - \cos^2 \theta}$

E.
$$\frac{2}{\sin^2\theta - \cos^2\theta}$$

82 46.

AB and *CD* are two buildings of heights h and d respectively. The angles of elevation of *C* from *A* and *B* are respectively θ and 45°. d =

A.
$$h(1 - \tan \theta)$$

B. $h(1 + \tan \theta)$
C. $h \tan \theta$
D. $\frac{h}{1 + \tan \theta}$
E. $\frac{h}{1 - \tan \theta}$

82 47.

In the figure, *BP* is a diameter of the circle. The minor arc *AB* and the radius are of equal length. $\angle APB =$

A. $\frac{1}{2}$ rad B. 1 rad C. $\frac{\pi}{6}$ rad

D.
$$\frac{\pi}{4}$$
 rad
E. $\frac{\pi}{3}$ rad

82 How many roots has the equation 48. $\sin\theta + \sin^2\theta = \cos^2\theta$

where
$$0^{\circ} \le \theta \le 360^{\circ}$$
?

- A. 0
 B. 1
 C. 2
 D. 3
 E. 4
- 82 If $0 \le x \le \pi$ and $\sin x \le \cos x$, what is 49. the range of *x*?

In the figure, *ABCD* is a square of side 2a. *M* and *N* are the mid-points of *AB* and *CD* respectively. *h* is the height of the parallelogram *MBND*. *h* =

A.
$$\frac{1}{2}a$$

82 51.

In the figure, *ABCD* is a rectangle. *AC* and *BC* intersect at *K*. *PAK* is an equilateral triangle. $\angle PBK =$

- A. 48°
- B. 50°
- C. 52°
- D. 54°
- E. 60°

82 52.

In the figure, O is the centre of the circle. PQ is a diameter. Which of the following is/are true?

- I. a = b
- II. c = 2a
- III. $c + d = 180^{\circ}$
- A. I only
- B. I and II only

- C. I and III only
- D. II and III only
- E. I, II and III

in the figure, the length of the minor arc *CD* is half the length of the minor arc *BC*. $\angle ACD =$

A.	30°
В.	35°
C.	40°
D.	45°
E	50°

82 54.

82

53.

In the figure, *TP* and *TQ* touch the circle at *P* and *Q* respectively. *R* is the point on *TQ* produced such that *PR* passes through the centre *O* of the circle. $\angle QPR =$

A.	55°
B.	40°
C.	35°
D.	30°

E. 20°

82-CE-MATHS II