Form 5

1. $\frac{\left(a^{2} b^{-3}\right)^{2}}{a^{-2} b}=$
A. $a^{2} b^{-7}$
B. $a^{2} b^{-5}$
C. $a^{6} b^{-2}$
D. $a^{6} b^{-6}$
E. $a^{6} b^{-7}$
2. $\frac{1}{x+1}+\frac{1}{x-1}+\frac{x+\frac{1}{x}}{x-\frac{1}{x}}=$
A. $\frac{1}{x+1}$
B. $\frac{1}{x-1}$
C. $\frac{x+1}{x-1}$
D. $\frac{1}{(x+1)(x-1)}$
E. $\frac{x^{2}+4 x+1}{(x+1)(x-1)}$

81
3. If $x=\frac{-b x+a y-c}{a+b y}$, then $y=$
$=$
A. $\frac{a x+b x+c}{a-b x}$
B. $-\frac{a x+b x+c}{a-b x}$
C. $\frac{a x+b x+c}{a+b x}$
D. $-\frac{a x+b x+c}{a+b x}$
E. $\frac{a x-b x-c}{a-b x}$
A. $2^{\left(x^{x}\right)}$
B. $2^{x} \cdot x^{x}$
C. $2 x^{x}$
D. $2^{2 x}$
E. $2^{\left(x^{2}\right)}$
8. $\left(\frac{\frac{x}{y}+\frac{y}{x}+2}{\frac{x}{y}-\frac{y}{x}}\right)^{-1}=$
A. $\frac{x-y}{x+y}$
B. $\frac{x+y}{x-y}$
C. $-\frac{x+y}{x-y}$
D. $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$
E. $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$

81
6. If $H=K+\frac{M}{4 \pi\left(r^{2}+l^{2}\right)^{n}}$ and $r>0$, then $r=$
A.

$$
\left\{\left[\frac{M}{4 \pi(H-K)}\right]^{-n}-r^{2}\right\}^{\frac{1}{2}}
$$

B.

$$
\left[\frac{M}{4 \pi(H-K)}\right]^{-\frac{n}{2}}-l
$$

C.

$$
\left\{\left[\frac{M}{4 \pi(H-K)}\right]^{\frac{1}{n}}-l^{2}\right\}^{\frac{1}{2}}
$$

$81\left(2^{x}\right)^{x}=$
4.
D.

$$
\left[\frac{M}{4 \pi(H-K)}\right]^{\frac{1}{2 n}}-l
$$

E.

$$
\left\{\left[\frac{4 \pi}{M(H-K)}\right]^{\frac{1}{n}}-l^{2}\right\}^{\frac{1}{2}}
$$

81 If $\mathrm{f}(x)=x^{2}+x+1$, then $\mathrm{f}(x+1)-\mathrm{f}(x)$
A. 1
B. 3
C. $2 x+1$
D. $2 x+2$
E. $x^{2}+x+1$

81 If $\log _{10} x+\log _{10} 4=\log _{10}(x+4)$, what is 8. the value of x ?
A. 0
B. 1
C. $\frac{4}{3}$
D. 4
E. x may be any positive number

81 It is given that
9. $x(2 x+3)=x(3 x-4) . x=$?
A. 0 only
B. 7 only
C. 0 or 7
D. $-\frac{3}{2}$ or $\frac{4}{3}$ only
E. $0,-\frac{3}{2}$ or $\frac{4}{3}$

81 $2 y-3>4 y+2 x+5$ is equivalent to 10.
A. $y>x+4$
B. $y<x+4$
C. $y>-x-4$
D. $y<-x-4$
E. $y>x+1$

81 The nth term of the arithmetic 11. progression $2,6,10,14, \ldots$ is
A. $2 n^{2}$
B. $4 n$
C. $4 n-2$
D. $4 n+2$
E. $6-4 n$

81 If $3 x-2 y=x+3 y$, then $x^{2}: y^{2}=$ 12.
A. $2: 5$
B. $5: 2$
C. $4: 25$
D. $25: 4$
E. $1: 4$

81 The marked price of a book is $\$ x$. 30%
13. of this price is profit. If the book is sold at a discount of 20%, what will the profit then be?
A. $\$ 0.04 x$
B. $\$ 0.06 x$
C. $\$ 0.1 x$
D. $\$ 0.24 x$
E. $\$ 0.56 x$

81 A group consists of n boys and n girls.
14. If two of the girls are exceeded by two other boys, then 51% of the group members will be boys. What is n ?
A. 50
B. 51
C. 52
D. 100
E. 102

81 If the surface area of a spherical soap 15. bubble increases by 44%, its volume increases by
A. 20%
B. 33.1%
C. 60%
D. 66%
E. 72.8%

81
16.

The total area of the six faces of the solid cube in the figure is $96 \mathrm{~cm}^{2}$. What is the length of the diagonal $A B$?
A. $6 \sqrt{2} \mathrm{~cm}$
B. $4 \sqrt{3} \mathrm{~cm}$
C. $4 \sqrt{2} \mathrm{~cm}$
D. $2 \sqrt{6} \mathrm{~cm}$
E. 4 cm

81 A merchant sold 100 chairs. 80 of
17. them were sold at a profit of 30% on each chair, while 20 of them were sold at a loss of 40% on each chair. What is his percentage gain or loss on the whole stock?
A. A loss of 8%
B. A loss of 10%
C. A gain of 8%
D. A gain of 16%
E. A gain of 24%
$\begin{aligned} & \text { 81 } \\ & \text { 18. }\end{aligned} 0^{\circ}<\theta<90^{\circ}$ and $\sin \theta=\frac{k}{2}$,
then $\cos \theta=$
A. $1-\frac{k}{2}$
B. $\frac{2}{\sqrt{4+k^{2}}}$
C. $\frac{\sqrt{4+k^{2}}}{2}$
D.
D. $\frac{2}{\sqrt{4-k^{2}}}$
E. $\frac{\sqrt{4-k^{2}}}{2}$
81. $\tan \theta \sin \theta-\frac{1}{\cos \theta}=$
A. 0
B. $\cos \theta$
C. $-\cos \theta$
D. $\frac{-1}{\cos \theta}$
E. $-\tan \theta \sin \theta$

81 If $0^{\circ} \leq \theta \leq 360^{\circ}$, the number of roots of
20. the equation $2 \sin \theta \cos \theta-\cos \theta=0$ is
A. 0
B. 1
C. 2
D. 3
E. 4

81 An angle measures x radians. What is 21. its measure in degrees?
A. $\left(\frac{\pi x}{180}\right)^{0}$
B. $\left(\frac{180 x}{\pi}\right)^{0}$
C. $\left(\frac{\pi}{180 x}\right)^{0}$
D. $\left(\frac{\pi x}{360}\right)^{0}$
E. $\left(\frac{360 x}{\pi}\right)^{0}$

81
22.

In the figure, $\cos \theta=$
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. $\frac{\sqrt{3}}{2}$
E. $\frac{\sqrt{3}}{4}$

81
23.

In the figure, $A D=p, D C=q, \angle B=$ $90^{\circ} . A B=$
A. $p \sin \theta+q \sin \phi$
B. $p \cos \theta+q \cos \phi$
C. $p \sin \theta+q \cos \phi$
D. $p \cos \theta+q \sin \phi$
E. $(p+\mathrm{q})(\cos \theta+\cos \phi)$

81
24.

In the figure, $B E$ is a diameter of the circle. $A B C$ and $E D C$ are straight lines. $x^{0}=$
A. 21°
B. 31°
C. 38°
D. 52°
E. 59°

81
25.

In the figure, $A T$ touches the circle at A. In $\triangle A B C, \angle A: \angle B: \angle C=2: 3: 4$. θ =
A. 40°
B. 50°
C. 60°
D. 70°
E. 80°
26.

In the figure, $A B$ is a diameter of the circle with centre at O. The length of the minor arc $A C$ in twice the length of the minor arc $C D . \angle B O D=$
A. 72°
B. 90°
C. 108°
D. 132°
E. 144°
27.

In the figure, two circles both with radius
2 cm touch each other externally. $A P$ and $A Q$ are equal tangents to the two circles. $A P=$?
A. $\sqrt{3} \mathrm{~cm}$
B. $2 \sqrt{3} \mathrm{~cm}$
C. 4 cm
D. $4 \sqrt{3} \mathrm{~cm}$
E. $\frac{4 \sqrt{3}}{3} \mathrm{~cm}$
28.

In the figure, $A B C D$ is a quadrilateral. The shaded portions are four sectors with centres at A, B, C and D. Their radii are all equal to a. What is the total area of the four sectors?
A. πa^{2}
B. $2 \pi a^{2}$
C. $4 \pi a^{2}$
D. $\sqrt{2} \pi a^{2}$
E. It cannot be determined

81
29.
A. $x \leq 1$
B. $x \geq-1$
C. $-1 \leq x \leq 1$
D. $x \geq 1$ or $x \leq-1$
E. $x \leq 1$ or $x \geq-1$

81
30.

In the figure, which point in the shaded region will make the value of $x-2 y$ a minimum
A. A
B. B
C. C
D. D
E. E
$816 x^{2}+k x+6=0$ is a quadratic equation
31. in which k is a constant. Its roots α and β are positive. $\log _{10} \alpha+\log _{10} \beta=$
A. 0
B. 1
C. $\log _{10} 6$
D. $\log _{10}(-k)$
E. $\log _{10}\left(-\frac{k}{6}\right)$

81 $-3 x^{2}-3 x \equiv-3(x+a)^{2}+b$ is an identity
32. in x. What are the values of the constants a and b ?
A. $\quad a=1$ and $b=0$
B. $a=\frac{1}{2}$ and $b=\frac{3}{4}$
C. $a=\frac{1}{2}$ and $b=\frac{3}{4}$
D. $a=-\frac{1}{2}$ and $b=\frac{3}{4}$
E. $\quad a=-\frac{1}{2}$ and $b=-\frac{3}{4}$

81 The H.C.F. and L.C.M. of three
33. expressions are $a^{2} b^{2} c$ and $a^{4} b^{6} c^{4}$ respectively. Two of the expressions are $a^{2} b^{3} c^{4}$ and $a^{3} b^{2} c^{2}$. The third expression is
A. $a^{3} b^{3} c$
B. $a^{3} b^{6} c^{4}$
C. $a^{4} b^{2} c$
D. $a^{4} b^{6} c$
E. $a^{4} b^{6} c^{2}$

81 The sum of the first five terms of an
34. arithmetic progression is 15 . If the fourth term is 7, the first term is
A. -5
B. -3
C. -1
D. 1
E. 10

81 Which of the following can be summed
35. to infinity?
I. The arithmetic progression $4,3,2,1, \ldots \ldots$
II. The geometric progression 27, 9, 3, 1,
III. The geometric progression $16,-8,4,-2, \ldots \ldots$
A. II only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III

81 The running speeds of three boys A, B
36. and C are in the ratios $a: b: c$. The times that A, B and C take to complete a 1500 m race are in the ratios
A. $a: b: c$
B. $c: b: \mathrm{a}$
C. $b+c: a+c: a+b$
D. $\frac{1}{a}: \frac{1}{b}: \frac{1}{c}$
E. $\frac{a}{b}: \frac{b}{c}: \frac{c}{a}$

81 If n is a positive integer, which of the
37. following numbers is/are odd?
I. $\quad 2^{2 n+1}$
II. $3\left(2^{n}\right)$
III. $(2 n+1)^{2}$
A. II only
B. III only
C. I and III only
D. II and III only
E. I, II and III

81 A factory employs x workers each 38. working n hours a day. The whole factory produces k watches per day. If y workers go on leave, then how many hours a day should the remaining workers work in order to produce the same number of watches per day?
A. $\frac{n x}{y}$
B. $\frac{n y}{x}$
C. $\frac{n x}{4 y}$
D. $\frac{n x}{x-y}$
E. $\frac{n(x-y)}{x}$

81 The daily wages of a man and a boy are
39. in the ratio $2: 1$. In a day a man has to work 8 hours but a boy only 6 hours. The hourly wages of a man and a boy are in the ratio
A. $8: 3$
B. $2: 1$
C. $3: 2$
D. $4: 3$
E. $1: 1$

81
40.

In the figure, $\angle B A C=90^{\circ}, A B=8$, $A C=5$ and $A X \perp B C . \quad B C D E$ is a rectangle with $C D=A X$. What is the area of the rectangle $B C D E$?
A. 20
B. 40
C. 80
D. 89
E. $4 \sqrt{89}$

The height of the cone in the figure is
h. It contains water to a depth of $\frac{1}{2} h$.
$\frac{\text { Volume of water }}{\text { Capacity of the cone }}=$
A. $\frac{1}{8}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$
E. $\frac{7}{8}$

81
42.

The figure above represents a $50 \mathrm{~m} \times$ 20 m swimming pool. The pool is in the shape of a prism with a rectangular surface and four vertical walls. The dimensions of the sidewall $A B C D E F$ are as shown in the figure. What is the capacity of the pool in m^{3} ?
A. 1200
B. 1500
C. 1800
D. 2000
E. It cannot be determined
81. Given that $\sin \theta-\cos \theta=\frac{1}{2}$, what is the value of $\sin \theta \cos \theta$?
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{3}{8}$
D. $\frac{3}{4}$
E. It cannot be determined

81 If $0^{\circ} \leq \theta \leq 360^{\circ}$, the minimum value of
44.
$1+2 \cos \frac{\theta}{2}$ is
A. -2
B. -1
C. 0
D. 1
E. 2

81
45.

The figure above shows the graph of
A. $y=\sin \left(x^{\circ}+30^{\circ}\right)$
B. $y=\sin \left(x^{\circ}-30^{\circ}\right)$
C. $y=\sin \left(x^{\circ}+150^{\circ}\right)$
D. $y=\sin \left(x^{\circ}-150^{\circ}\right)$
E. $y=\sin \left(x^{0}+60^{\circ}\right)$

81 The radius of a sector is 3 cm and the
46. perimeter is 10 cm . What is the area of the sector?
A. $6 \mathrm{~cm}^{2}$
B. $12 \mathrm{~cm}^{2}$
C. $15 \mathrm{~cm}^{2}$
D. $18 \mathrm{~cm}^{2}$
E. $45 \mathrm{~cm}^{2}$

81
47.

Figure (a)

Figure (b)

The cone in Figure (b) is formed by bending the sector in Figure (a). The angle of the sector is 60° and the radius is 12 cm . The radius of the base of the cone is
A. 2 cm
B. 4 cm
C. 6 cm
D. $2 \pi \mathrm{~cm}$
E. $\frac{360}{\pi} \mathrm{~cm}$
48.

In the figure, $\sin \theta=$
A. 0.5
B. 0.6
C. 0.625
D. 0.75
E. 0.8

81
49.

In the figure, $A D \perp B C . C D=$
A. $h \sin \alpha \tan \beta$
B. $h \cos \alpha \tan \beta$
C. $h \tan \alpha \sin \beta$
D. $\frac{h \cos \alpha}{\tan \beta}$
E. $\frac{h \sin \alpha}{\tan \beta}$

81
50.

In the figure, $A B C$ is an equilateral triangle of side $2 a . \quad P$ and Q are the mid-points of $A B$ and $A C$ respectively. $P Q R S$ is a rectangle. What is the area of PQRS?
A. a^{2}
B. $\frac{1}{2} a^{2}$
C. $\frac{2}{3} a^{2}$
D. $\frac{1}{\sqrt{3}} a^{2}$
E. $\frac{\sqrt{3}}{2} a^{2}$

81
51.

In the figure, $A B$ and $A C$ touch the circle at B and C. If P is any point on the minor arc $B C$, what is θ ?
A. 112°
B. 118°
C. 124°
D. 146°
E. It cannot be determined

81 I
52.

$$
\begin{gathered}
\angle B A C=90^{\circ} \\
A D \perp B C .
\end{gathered}
$$

II

$A C$ and $B C$ intersect at E.

Which of the above figures contains one or more pairs of similar triangles?
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III

In the figure, $A B / / C D / / E F$. $A C F$, $B C E$ and $B D F$ are straight lines.
$A B=12, E F=6 . C D=$?
A. 4.5
B. 4
C. 3.6
D. 3
E. 2

In the figure, P is the mid-point of $A B$.
E is a point on $A C$ such that
$A E: E C=2: 1$. $\frac{\text { Area of } \triangle B F E}{\text { Area of } \triangle B C E}=$
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. 1
D. $\frac{3}{2}$
E. 2

