Form 5

HKCEE 1980 Mathematics II

A. $x^{-1} + y^{-1}$ B. $x^{-1} - y^{-1}$ C. $x^{-3} - y^{-3}$ D. $\frac{1}{x - y}$ $2ab - a^2 - b^2 =$ 80 1. A. $(a-b)^2$ B. $(-a-b)^2$ C. $(-a+b)^2$ D. $-(a+b)^2$ E. $-(a-b)^2$ E. $\frac{1}{x+y}$ $125^a \cdot 5^b =$ 80 6. If $\frac{1}{x} = a + b$ and $\frac{1}{y} = a - b$, 80 2. then x + y =A. 625^{a+b} A. $\frac{2}{a}$ B. $\frac{a^2 - b^2}{a}$ C. $-\frac{a^2 - b^2}{a}$ D. $\frac{2a}{a^2 - b^2}$ E. 2aB. 625^{*ab*} C. 125^{a+3b} D. 5^{a+3b} E. 5^{3a+b} 80 If 4p = 9q, then $\frac{4p^2}{9q^2} =$ 3. A. 1 E. $\frac{-2a}{a^2-b^2}$ A. 1 B. $\frac{4}{9}$ C. $\frac{9}{4}$ D. $(\frac{4}{9})^2$ E. $(\frac{9}{4})^2$ 80 7. If $x = \frac{y + (n-1)z}{n+1}$, then n =A. $\frac{x - y + z}{z}$ B. $\frac{x + y - z}{z}$ C. $\frac{y - x - z}{x + z}$ If $n = 10^a$, then $\log_{10}n =$ 80 4. D. y-x-zA. 10^{*a*} B. 10^{*n*} x - zC. n^a $\frac{y+x-z}{x-z}$ E. D. a^n E. *a* $\frac{80}{8.} \quad \frac{5^{n+2} - 35(5^{n-1})}{18(5^{n+1})} =$ 80 $\frac{x^{-2} - y^{-2}}{x^{-1} - y^{-1}} =$ 5.

80-CE-MATHS II

- A. $\frac{1}{18}$
- B. <u>1</u>
- 15 C. 1
- $\frac{1}{5}$
- D. 5
- E. 5^{*n*}
- 80 Solve the inequality
- 9. (4x+3)(x-4) > 0

A.
$$x > 4$$

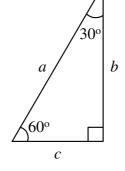
B. $4 > x > -\frac{3}{4}$
C. $-\frac{3}{4} > x$
D. $-\frac{3}{4} > x \text{ or } x > 4$
E. $x > -\frac{3}{4}$

- 80 When the hour hand has turned through
- 10. an angle x° , what is the angle through which the minute hand has turned?
 - A. $6x^{\circ}$
 - B. $12x^{\circ}$
 - C. $60x^{\circ}$
 - D. $360x^{\circ}$
 - E. $3 600x^{\circ}$
- 80 The first term of an arithmetic11. progression is 6 and its tenth term is three times its second term. The common difference is
 - A. 18
 - B. 4
 - C. 3
 - D. 2
 - E. 1
- 80 A man solid a car for \$35 000 at a loss
- 12. of 30% on the cost price. What would have been the loss or gain percent if he had sold it for \$50 500?

- A. A gain of 10%
- B. A gain of 1%
- C. No gain nor loss
- D. A loss of 10%
- E. A loss of 1%
- 80 If the length of a rectangle is increased
- 13. by 10% and the width decreased by 10%, which of the following is true?
 - A. Its area remains the same
 - B. Its area is decreased by 1%
 - C. Its area is increased by 1%
 - D. Its area is decreased by 10%
 - E. Its area is increased by 10%
- 80 The length of a side of a rhombus is
- 14. 10 cm. If its shorter diagonal is of length 12 cm, what is the area of the rhombus in cm²?
 - A. 60
 - B. 96
 - C. 100
 - D. 120
 - E. 192
- 80 If the bearing of B from A is $S30^{\circ}W$,
- 15. then the bearing of A from B is
 - A. N30°E
 B. N60°W
 C. N60°E
 D. S30°W
 E. S30°E

$$\begin{array}{rcl}
80 & \frac{1}{16.} & \frac{1}{\frac{1}{\sin\theta} - 1} - \frac{1}{\frac{1}{\sin\theta} + 1} = \\
& \text{A.} & 2 \tan\theta \\
& \text{B.} & 2 \tan^2\theta \\
& \text{C.} & \frac{2}{\tan^2\theta} \\
& \text{D.} & 2 \sin\theta
\end{array}$$

E.
$$\frac{2\sin^2\theta}{\cos^2\theta}$$
$$\frac{2\sin^2\theta}{\cos\theta}$$


80 If $\cos \theta = x$ and $0^{\circ} < \theta < 90^{\circ}$, then $\tan \theta$ 17.

A.
$$\frac{1}{\sqrt{1-x^{2}}}$$

B.
$$\sqrt{1-x^{2}}$$

C.
$$\frac{\sqrt{1-x^{2}}}{x}$$

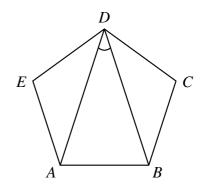
D.
$$\frac{x}{\sqrt{1-x^{2}}}$$

E.
$$\pm \frac{x}{\sqrt{1-x^{2}}}$$

80
21.

- 80 If $0^{\circ} \le \theta < 360^{\circ}$, which of the following 18. equations has exactly one root?
 - A. $\sin \theta = -1$ B. $\sin \theta = -\frac{1}{2}$ C. $\sin \theta = 0$ D. $\sin \theta = \frac{1}{2}$
 - E. $\sin \theta = 2$

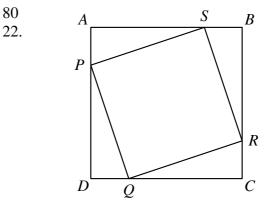
80



In the figure, a:b:c =

A. 3:2:1B. 9:4:1C. $2:\sqrt{3}:1$ D. $\sqrt{3}:\sqrt{2}:1$ E. $\sqrt{3}:2:1$

80 What is the area, in cm^2 , of an 20. equilateral triangle of side *x* cm?


A.
$$\frac{\sqrt{3}}{4}x^{2}$$

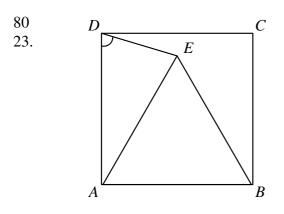
B.
$$\frac{\sqrt{3}}{2}x^{2}$$

C.
$$\frac{1}{4}x^{2}$$

D.
$$\frac{1}{2}x^{2}$$

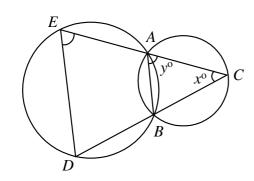
E.
$$\sqrt{3}x^{2}$$

In the figure, *ABCDE* is a regular pentagon. $\angle ADB =$


A.	35°
B.	36
C.	40 [°]
D	510

D. 54° E. 72°

In the figure, ABCD is a square with AB = 5. AP = BQ = CR = DS = 1. What is the area of *PQRS*?

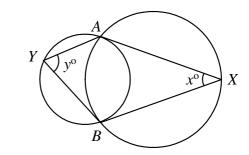

A. 9

In the figure, ABCD is a square and ABE is an equilateral triangle. $\angle ADE = ?$

- A. 72°
- 74[°] B.
- 76° C. 78[°]
- D.
- E. None of the above

80 24.

In the figure, the two circles intersect at A and B. CAE and CBD are straight lines. $\angle CED =$

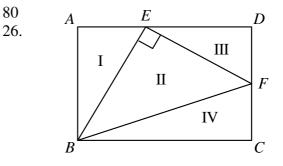

A.
$$y^{o}$$

B.
$$180^{\circ} - y$$

C.
$$180^{\circ} - x^{\circ} - y^{\circ}$$

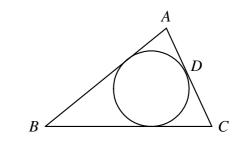
D.
$$180^{\circ} - x^{\circ} + y^{\circ}$$

 $180^{\circ} - x^{\circ} + y^{\circ}$ $360^{\circ} - x^{\circ} - y^{\circ}$ E.



In the figure, circle AXB passes through the centre of circle AYB. y =

2*x* A. Β. 180 - 2xC. 180 - x $\frac{1}{-}(90-x)$ D.


80 25.

E.
$$\frac{1}{2}(180 - x)$$

In the figure, ABCD is a rectangle $\angle BEF = 90^{\circ}$. Which two of the triangles I, II, III and IV must be similar?

- A. I and II
- I and III B.
- C. II and III
- D. II and IV
- E. III and IV

80

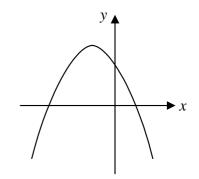
27.

In the figure, the inscribed circle of \Box ΔABC touches AC at D. If AB = 7, AC = 5 and AD = 2, then BC =

- A. 9.5
- B. 9
- C. 8.5 D. 8
- E. 7.5
- E. 7.3

80 A certain sum of money is just
28. sufficient to pay the wages of one man for *m* days or the wages of one boy for *n* days. For how many days will this sum be just sufficient to pay the wages of one man and one boy together?

A.	m + n
B.	m + n
	2
C.	1 1
	$\frac{-+-}{m}$
D.	m + n
	mn
E.	mn
	$\overline{m+n}$


- 80 If the value of $y^2 + 3y + 7$ is 2, what is 29. the value of $2y^2 + 6y - 3$?
 - A. -13
 - B. –7
 - C. 7
 - D. 13
 - E. It cannot be found from the information given
- 80 A, B, C are three spheres. If
- 30. $\frac{\text{Surface area of } A}{\text{Surface area of } B} = 4 \text{ and}$ $\frac{\text{Volume of } B}{\text{Volume of } C} = 2, \text{ then}$ $\frac{\text{Volume of } A}{\text{Volume of } C} =$
 - A. 16
 - B. 8
 - C. 2

- D. $\frac{1}{8}$ E. $\frac{1}{16}$
- 80 The $2n^{\text{th}}$ term of the geometric
- 31. progression, 8, -4, 2, -1, ..., is

A.
$$\frac{1}{2^{2n+2}}$$

B. $\frac{-1}{2^{2n+2}}$
C. $\frac{1}{2^{2n-3}}$
D. $\frac{1}{2^{2n-4}}$
E. $\frac{-1}{2^{2n-4}}$

80

32.

The figure above shows the graph of $y = ax^2 + bx + c$. Determine whether *a* and *c* are positive or negative.

- A. a > 0 and c > 0
- B. a < 0 and c < 0
- C. a > 0 and c < 0
- D. a < 0 and c > 0
- E. It cannot be determined from the given data
- 80 \$*P* amounts to \$*Q* in *n* years at simple
- 33. interest. The rate per annum is

A.
$$\frac{100n(Q-P)}{P}\%$$

B.
$$\frac{100(Q-P)}{n}\%$$

C.
$$\frac{100(Q-P)}{nP}\%$$

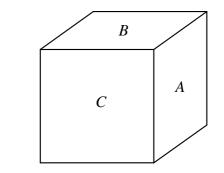
D. $\frac{100(Q-P)}{nQ}\%$
E. $100[(\frac{Q}{P})^{\frac{1}{n}} - 1]\%$

80
34. If
$$0 < x < 1$$
, which of $x, x^2, \frac{1}{x}, \sqrt{x}$ is
the smallest? Which is the largest?

A.
$$\sqrt{x}$$
 is smallest, x^2 is largest
B. $\frac{1}{x}$ is smallest, x^2 is largest
C. x is smallest, $\frac{1}{x}$ is largest
D. x^2 is smallest, $\frac{1}{x}$ is largest
E. x^2 is smallest, \sqrt{x} is largest

- 80 The Highest Common Factor of two
- 35. unequal Positive integers *a* and *b* is 8. Which of the following must be true?
 - I. The difference between *a* and *b* is divisible by 8
 - II. (a + b) is divisible by 16
 - III. *ab* is divisible by 64
 - A. III only
 - B. I and II only
 - C. I and III only
 - D. II and III only
 - E. I, II and III only
- 80 x, y and z are three consecutive positive36. integers. Which of the following is true?
 - A. x + y + z must be odd
 - B. x + y + z must be even
 - C. xyz must be odd
 - D. xyz must be even
 - E. $x^2 + y^2 + z^2$ must be even
- 80 If $x^2 kx + 9 \ge 0$ for all real values of *x*,
- 37. what is the value of k?

- A. k = -6 only B. k = 6 only C. $-6 \le k \le 6$ D. k = 6 or -6 only E. $k \le -6$ or $k \ge 6$
- 80 If x and y are real numbers, what is the 38. minimum value of the expression $(x + y)^2 - 1$?

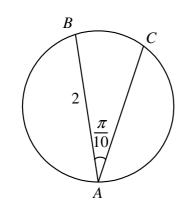

$$(x+y)^2 - 1$$

- A. -5
- B. -1
- C. 0
- D. 3

80

39.

E. It cannot be determined

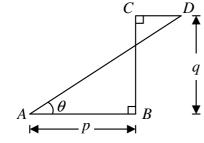

In the figure, the areas of the surfaces A, B, C of the cuboid are 10 cm², 14 cm² and 35 cm² respectively. What is the volume of the cuboid?

- A. 49 cm^3
- B. 70 cm^3
- C. 140 cm^3
- D. 350 cm^3
- E. $4\,900\,\mathrm{cm}^3$

80 x is a positive integer such that

- 40. $x^2 + 2x + 7$ is even. What are the possible values of x?
 - A. *x* can be any positive integer
 - B. *x* can be any positive even number
 - C. *x* can be any positive odd number
 - D. *x* must be an even number greater than 10 000
 - E. *x* must be an positive odd number greater than 10 000

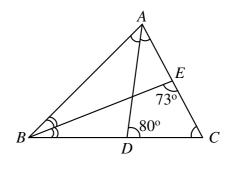
- 80 The perimeter of a sector is 16 and its
- 41. angle is 2 radians. What is the area of the sector?
 - A. 16
 - B. 32
 - C. 64
 - D. 16π
 - E. 32π
- 80 42.



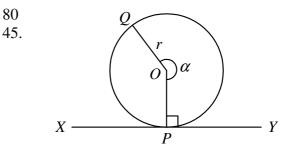
In the figure, diameter AB = 2. $\angle CAB = \frac{\pi}{10}$ rad. Minor arc BC =

- A. $\frac{\pi}{10}$ B. $\frac{\pi}{5}$ C. 3π
- D. $\frac{\overline{10}}{4\pi}$ E. 9π

10


80 43.

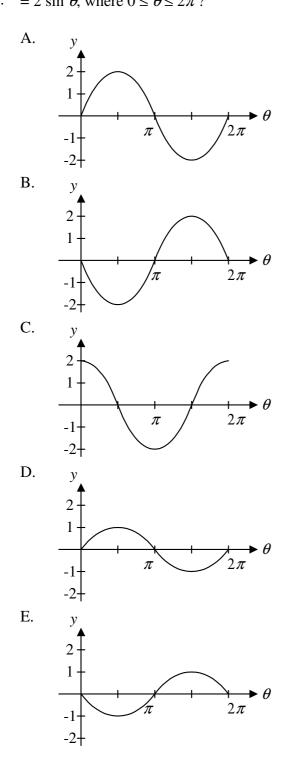
In the figure, $\angle B = \angle C = 90^{\circ}$. If AB = p and BC = q, then CD =

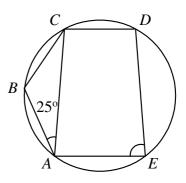

A.
$$p + q \tan \theta$$

B. $p + \frac{q}{\tan \theta}$
C. $p + q \cos \theta$
D. $-p + q \tan \theta$
E. $-p + \frac{q}{\tan \theta}$

80 44.

In the figure, AD and BE bisect $\angle A$ and $\angle B$ respectively. $\angle C =$


A.	50°
B.	68°
C.	74 [°]
D.	78°
E.	80°



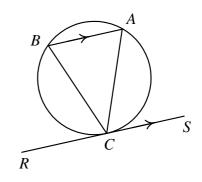
In the figure, O is the centre of the circle and its radius is r. XY touches the circle at P. Find the distance of Q from XY.

- A. $r(1 \sin \alpha)$ B. $r(1 + \sin \alpha)$
- C. $r(1 \cos \alpha)$
- D. $r(1 + \cos \alpha)$
- E. $r(2 \sin \alpha)$

80 Which of the following is the graph of y 46. = $2 \sin \theta$, where $0 \le \theta \le 2\pi$?

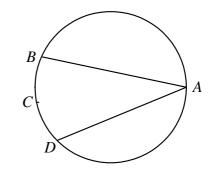
In the figure, AB = BC = CD. $\angle AED =$

A.	50°
В.	65°
C.	75°
D.	90°

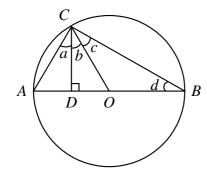

80

47.

80

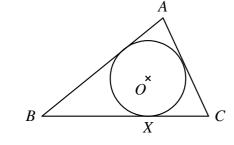

48.

E. 105°

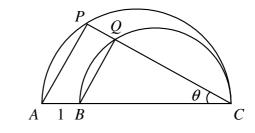

In the figure, *RS* is a tangent to the circle at *C*. *BA* is any chord parallel to *RCS*. Which of the chords *AB*, *BC* and *CA* must be equal in length?

- A. *AB* and *BC* only
- B. AC and BC only
- C. *AB* and *AC* only
- D. All of them
- E. No two of them

80 49. In the figure, AB = AC, D is the midpoint of arc BC. Which of the following is/are true?


- I. AD bisects $\angle BAC$
- II. $BC \perp AD$
- III. AD is a diameter of the circle
- A. I only
- B. II only
- C. III only
- D. I and II only
- E. II and III only
- 80 50.

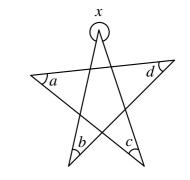
In the figure, *AOB* is a diameter of the circle, centre *O*. *CD* is the perpendicular bisector of *OA*. Which of the angles *a*, *b*, *c*, *d* is/are equal to 30° ?


- A. *a* only
- B. *a* and *b* only
- C. *a*, *b* and *c* only
- D. *a*, *b*, *c* and *d*
- E. None of them

80 51.

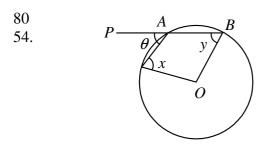
In the figure, circle *O* is inscribed in $\triangle ABC$, touching *BC* at *X*. Which of the following must be true?

- I. $OX \perp BC$
- II. *OA* bisect $\angle A$
- III. AO produced bisect BC
- A. I only
- B. I and II only
- C. I and III only
- D. I, II and III only
- E. None of them


In the figure, AC and BC are diameters of two semi-circles touching each other internally at *C*. *PQC* is a straight line. If AB = 1, then PQ =

A. $\cos \theta$ B. $\sin \theta$ C. $\tan \theta$ D. $\frac{1}{\sin \theta}$ E. $\frac{1}{\cos \theta}$

80 53.


80

52.

With the notation in the figure, express a + b + c + d in terms of *x*.

- A. $x 180^{\circ}$ B. xC. $540^{\circ} - x$
- D. $360^{\circ} x$

In the figure, *O* is the centre of the circle. *PAB* is a straight line. x + y =

- A. 2θ B. $90^{\circ} + \theta$
- C. $180^{\circ} \theta$
- D. $180^\circ 2\theta$
- E. 180°