/,

Sequences

數列

<u>Contents 目錄:</u>

Sequences 數列

- ⇒ Definition of Sequences 數列之定義
- ⇒ The general terms of sequences 數列之通項
- ⇒ Arithmetic and Geometric Sequences 等差(算術)數列及等比(幾何)數列
- Sum to n terms of Arithmetic and Geometric Sequences 等差(算術)數列及等比(幾何)數列之 n 項和
- Sum to infinity of geometric series 等比(幾何)數列無限項之和
- ➡ Summary of Notes 筆記總結

HKCEE Mathematics Syllabus – Sequences:

Syllabus Topics	Whole Syllabus	Foundation Part
Sequences.	• The general terms of sequences.	• The general terms of sequences.
	Arithmetic and geometric	
	sequences. Sum to n terms. Sum to	
	infinity of geometric series.	
	Applications to real-life problems.	

會考數學課程 -

課題	整體課程		基礎	基礎課程		
數列.	•	數列之通項.	•	數列之通項.		
	•	等差(算術)數列及等比(幾				
		何)數列.n項和.等比數列				
		無限項之和.現實生活問題				
		之應用				

1. <u>Definition of Sequences</u> <u>數列之定義</u>

Sequences: An arrangement of a series of numbers according to a specified set of rules. [數列: 根據特定法則排列的一連串數字.] e.g. 1, 2, 3, ... n-1, n. **Relationship:** e.g. 2, 4, 6, ... n-2, n. Relationship: e.g. 1, 3, 9, ... 3ⁿ⁻², 3ⁿ⁻¹ Relationship: e.g. 1, -1, 1, ... $(-1)^{n-2}$, $(-1)^{n-1}$ **Relationship:** e.g. 1, $\frac{1}{2}$, $\frac{1}{4}$, ... $\left(\frac{1}{2}\right)^{n-2}$, $\left(\frac{1}{2}\right)^{n-2}$ Relationship: 200 黎 Sir 提提你:

2. <u>The general terms of sequences</u> <u>數列之通項</u>

The general term of a sequence: A term can generalize all the

other terms in the sequence.

[數列之通項:一項可概括在同一數列的其他項.]

A Sequences is composed of [數列是由]:

T(1): The First Term 第一項

T(2): The Second Term 第二項

T(3): The Third Term 第三項

•••

T(r): The rth Term 第 r 項

•••

T(n-1): The n-1th Term 第 n-1 項

T(n): The nth Term 第 n 項

T(n) is also called the general term of the sequences.

[<u>T(n)也都被叫做該數列之通項.</u>]

e.g. 1, 2, 3, ... n-1, n.

e.g. 1, 3, 9, ... 3^{n-2} , 3^{n-1}

General Term:

e.g. 1, -1, 1, ... $(-1)^{n-2}$, $(-1)^{n-1}$

General Term:

General Term:

3. <u>Arithmetic and Geometric Sequences</u> <u>等差(算術)數列及等比(幾何)數列</u>

Arithmetic Sequences (A.S.): Every term after the first term is obtained by adding a constant to its preceding term. [等差(算術)數列:在首項後,每一個項都是由之前的一個項加上 -個常數.] The general term T(n) i.e. the nth term of a A.S.: T(n) = a + (n-1)da is the first term, d is the common difference and n is a no. of term [通項 T(n) i.e. 等差(算術)數列第n項: T(n)=a+(n-1)d] [a 是首項, d 是公差及 n 是一個項數] 黎 Sir 提提你:

Geometric Sequences (G.S.): Every term after the first term is obtained by multiplying a constant to its preceding term. [等比(幾何)數列:在首項後,每一個項都是由之前的一個項乘上 一個常數.] The general term T(n) i.e. the nth term of a G.S.: $T(n) = ar^{n-1}$ a is the first term, r is the common ratio and n is a natural number. [a 是首項, d 是公比及 n 是一個項數][通項 T(n) i.e. 等比(幾何)數列第n項: $T(n) = ar^{n-1}$] 黎 Sir 提提你:

4. <u>Sum to n terms of Arithmetic and Geometric Sequences</u> 等差(算術)數列及等比(幾何)數列之 n 項和

5. Sum to infinity of geometric series 等比(幾何)數列無限項之和

Sum to infinity of G.S.: $S(\infty) = \frac{a}{1-r}$ where $-1 < r < 1$.				
[等比(幾何)數列無限項之和: $S(\infty) = \frac{a}{1-r}$ 而 $-1 < r < 1$.]				
黎 Sir 提提你: ● <t< td=""></t<>				

6. <u>Summary of Notes</u> <u>筆記總結</u>

- The general term (The nth term) of a sequence: A term can generalize all the other terms in the sequence. We call it T(n).
 [數列之通項 (第n項): 一項可概括在同一數列的其他項.我們 稱之為 T(n).]
- 2. The general term of A.S.: *T*(*n*) = *a* + (*n*-1)*d* [等差數列的通項: *T*(*n*) = *a* + (*n*-1)*d*]
- **3. The general term of G.S.:** *T*(*n*)=*arⁿ⁻¹* [等比數列的通項: *T*(*n*)=*arⁿ⁻¹*]
- 4. Sum to n terms of A.S.: $S(n) = \frac{[a + a(n-1)d]n}{2}$ [等差數列之 n 項和: $S(n) = \frac{[a + a(n-1)d]n}{2}$] Sum to n terms of G.S.: $S(n) = \frac{a(1-r^n)}{1-r}$ [等比數列之 n 項和: $S(n) = \frac{a(1-r^n)}{1-r}$.] 5. Sum to infinity of G.S.: $S(\infty) = \frac{a}{1-r}$ where -1 < r < 1.

[等比(幾何)數列無限項之和: $S(\infty) = \frac{a}{1-r}$ 而 -1 < r < 1.]