

- 1. Answer ALL questions in Section A and any THREE questions in Section B.
- 2. All working must be clearly shown.
- 3. Unless otherwise specified, numerical answers must be exact.
- 4. In this paper, vectors may be represented by bold-type letters such as \mathbf{u} , but candidates are expected to use appropriate symbols such as \vec{u} in their working.
- 5. The diagrams in the paper are not necessarily drawn to scale.

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2000

2000-CE-A MATH 1-1

FORMULAS FOR REFERENCE

$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
$\cos\left(A\pm B\right) = \cos A \cos B \mp \sin A \sin B$
$\tan\left(A \pm B\right) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$
$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$
$2\sin A\cos B = \sin (A+B) + \sin (A-B)$
$2\cos A\cos B = \cos (A+B) + \cos (A-B)$
$2\sin A\sin B = \cos (A-B) - \cos (A+B)$

Section A (42 marks) Answer ALL questions in this section.

1. Solve
$$\frac{1}{x} > 1$$
.

(3 marks)

2. Find (a)
$$\frac{d}{dx}\sin^2 x$$
,
(b) $\frac{d}{dx}\sin^2(3x+1)$. (4 marks)

3. (a) Show that
$$\frac{1}{\sqrt{x+\Delta x}} - \frac{1}{\sqrt{x}} = \frac{-\Delta x}{\sqrt{x}(\sqrt{x+\Delta x})(\sqrt{x}+\sqrt{x+\Delta x})}$$

(b) Find
$$\frac{d}{dx}(\frac{1}{\sqrt{x}})$$
 from first principles.

(5 marks)

4.
$$P(-1, 2)$$
 is a point on the curve $(x+2)(y+3) = 5$. Find

(a) the value of
$$\frac{dy}{dx}$$
 at *P*,

(b) the equation of the tangent to the curve at P.

(5 marks)

5. (a) Solve |1-x| = 2.

(b) By considering the cases $x \le 1$ and x > 1, or otherwise, solve |1-x| = x-1.

(5 marks)

2000-CE-A MATH 1-3	-2-	Go on to the next page
/ 🕰 🕼 保留版權 All Rights Res	served 2000	

6. Express the complex number $\frac{1+\sqrt{3}i}{\sqrt{3}+i}$ in polar form. Hence find the argument θ of $\left(\frac{1+\sqrt{3}i}{\sqrt{3}+i}\right)^{2000}$, where θ is limited to the principal values $-\pi < \theta \le \pi$. (6 marks)

7. α and β are the roots of the quadratic equation

$$x^2 + (p-2)x + p = 0,$$

where p is real.

- (a) Express $\alpha + \beta$ and $\alpha\beta$ in terms of p.
- (b) If α and β are real such that $\alpha^2 + \beta^2 = 11$, find the value(s) of *p*.

(7 marks)

8.

In Figure 1, $\overrightarrow{OA} = \mathbf{i}$, $\overrightarrow{OB} = \mathbf{j}$. *C* is a point on *OA* produced such that AC = k, where k > 0. *D* is a point on *BC* such that BD: DC = 1:2.

(a) Show that $\overrightarrow{OD} = \frac{1+k}{3}\mathbf{i} + \frac{2}{3}\mathbf{j}$.

(b) If \overrightarrow{OD} is a unit vector, find

(i) k,

(ii) $\angle BOD$, giving your answer correct to the nearest degree. (7 marks)

2000-CE-A MATH 1-4 - 3 -

Section B (48 marks) Answer any **THREE** questions in this section. Each question carries 16 marks.

9.

(a)

In Figure 2, *OAC* is a triangle. *B* and *D* are points on *AC* such that AD = DB = BC. *F* is a point on *OD* produced such that OD = DF. *E* is a point on *OB* produced such that OE = k(OB), where k > 1. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(i)	Express	ΟĎ	in terms	of a	and	b.
(ii)	Show that	at \overline{O}	$\vec{C} = -\frac{1}{2}\mathbf{a}$	$+\frac{3}{2}$	b .	

(iii) Express
$$EF$$
 in terms of k , **a** and **b**.

(5 marks)

- (b) It is given that OA = 3, OB = 2 and $\angle AOB = 60^{\circ}$.
 - (i) Find $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{b} \cdot \mathbf{b}$.
 - (ii) Suppose that $\angle OEF = 90^{\circ}$.
 - (1) Find the value of k.
 - (2) A student states that points *C*, *E* and *F* are collinear. Explain whether the student is correct. (11 marks)

10. Let
$$f(x) = \frac{7-4x}{x^2+2}$$
.

(a) (i) Find the x- and y-intercepts of the curve
$$y = f(x)$$
.

- (ii) Find the range of values of x for which f(x) is decreasing.
- (iii) Show that the maximum and minimum values of f(x)are 4 and $-\frac{1}{2}$ respectively.

(9 marks)

(b) In Figure 3, sketch the curve
$$y = f(x)$$
 for $-2 \le x \le 5$.
(3 marks)

(c) Let
$$p = \frac{7 - 4\sin\theta}{\sin^2\theta + 2}$$
, where θ is real.

From the graph in (b), a student concludes that the greatest and least values of p are 4 and $-\frac{1}{2}$ respectively. Explain whether the student is correct. If not, what should be the greatest and least values of p?

(4 marks)

] [
			Total Marks
Candidate Number	Centre Number	Seat Number	on this page

If you attempt Question 10, fill in the first three boxes above and tie this sheet into your answer book.

10. (b) (continued)

Go on to the next page

This is a blank page.

11. (a) Let $w = \cos \theta + i \sin \theta$, where $0 < \theta < \pi$. It is given that the complex number $w^2 + \frac{5}{w} - 2$ is purely imaginary.

Show that $2\cos^2\theta + 5\cos\theta - 3 = 0$.

Hence, or otherwise, find w.

(8 marks)

(b) A and B are two points in an Argand diagram representing two distinct non-zero complex numbers z_1 and z_2 respectively. Suppose that $z_2 = wz_1$, where w is the complex number found in (a).

(i) Find
$$\left| \frac{z_2}{z_1} \right|$$
 and $\arg\left(\frac{z_2}{z_1} \right)$.

(ii) Let O be the point representing the complex number 0. What type of triangle is ΔOAB ? Explain your answer. (8 marks)

12. Consider the function
$$f(x) = x^2 - 4mx - (5m^2 - 6m + 1)$$
, where $m > \frac{1}{3}$

(a) Show that the equation f(x) = 0 has distinct real roots. (3 marks)

- (b) Let α, β be the roots of the equation f(x) = 0, where $\alpha < \beta$.
 - (i) Express α and β in terms of m.
 - (ii) Furthermore, it is known that $4 < \beta < 5$.

(1) Show that
$$1 < m < \frac{6}{5}$$
.

(2) Figure 4 shows three sketches of the graph of y = f(x) drawn by three students. Their teacher points out that the three sketches are all incorrect. Explain why each of the sketches is incorrect.

Two boats A and B are initially located at points P and Q in a lake respectively, where Q is at a distance 100 m due north of P. R is a point on the lakeside which is at a distance 100 m due west of Q. (See Figure 5.) Starting from time (in seconds) t = 0, boats A and B sail northwards. At time t, let the distances travelled by A and B be x m and y m respectively, where $0 \le x \le 100$. Let $\angle ARB = \theta$.

(a) Express $\tan \angle ARQ$ in terms of x.

Hence show that
$$\tan \theta = \frac{100 (100 - x + y)}{10000 - 100 v + x v}$$
. (4 marks)

- (b) Suppose boat A sails with a constant speed of 2 m s^{-1} and B adjusts its speed continuously so as to keep the value of $\angle ARB$ unchanged.
 - (i) Using (a), show that $y = \frac{100x}{200 x}$.
 - (ii) Find the speed of boat B at t = 40.
 - (iii) Suppose the maximum speed of boat *B* is 3 m s^{-1} . Explain whether it is possible to keep the value of $\angle ARB$ unchanged before boat *A* reaches *Q*.

END OF PAPER

(12 marks)

2000-CE-A MATH 1-12 - 11 - 全 C 保留版權 All Rights Reserved 2000

2000

Additional Mathematics

Paper 1

Section A

- 1. 0 < *x* < 1
- 2. (a) $2\sin x \cos x$
 - (b) $6\sin(3x+1)\cos(3x+1)$
- (b) $\frac{-\sqrt{x}}{2x^2}$ 3.
- (a) -5 4.
 - (b) 5x + y + 3 = 0
- 5. (a) x = -1 or 3
 - (b) $x \ge 1$
- $6. \qquad \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}, -\frac{2\pi}{3}$
- (a) 2-p, p7.
 - (b) -1
- (b) (i) $\sqrt{5} 1$ 8.
 - (ii) 48°

🔊 🕼 🖓 🖓 🖓 🖓 🖓

Section B

Q.9

(a) (i)
$$\overrightarrow{OD} = \frac{\mathbf{a} + \mathbf{b}}{2}$$

(ii) $\overrightarrow{OB} = \frac{\overrightarrow{OA} + 2\overrightarrow{OC}}{1+2}$
 $\mathbf{b} = \frac{\mathbf{a} + 2\overrightarrow{OC}}{3}$
 $\overrightarrow{OC} = -\frac{1}{2}\mathbf{a} + \frac{3}{2}\mathbf{b}$
(iii) $\overrightarrow{EF} = \overrightarrow{OF} - \overrightarrow{OE}$
 $= 2\overrightarrow{OD} - k\overrightarrow{OB}$
 $= 2(\frac{\mathbf{a} + \mathbf{b}}{2}) - k\mathbf{b}$
 $= \mathbf{a} + (1-k)\mathbf{b}$
(b) (i) $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle AOB$
 $= 3(2)\cos 60^{\circ}$
 $= 3$
 $\mathbf{b} \cdot \mathbf{b} = |\mathbf{b}|^{2} = 4$
(ii) (1) $\overrightarrow{OE} \cdot \overrightarrow{EF} = 0$
 $k\mathbf{b} \cdot [\mathbf{a} + (1-k)\mathbf{b}] = 0$
 $k\mathbf{a} \cdot \mathbf{b} + k(1-k)\mathbf{b} \cdot \mathbf{b} = 0$
 $3k + 4k(1-k) = 0$
 $7k - 4k^{2} = 0$
 $k = 0$ (rejected) or $k = \frac{7}{4}$
 $\therefore k = \frac{7}{4}$.

(2) Put
$$k = \frac{7}{4}$$
:
 $\overrightarrow{EF} = \mathbf{a} + (1 - \frac{7}{4})\mathbf{b} = \mathbf{a} - \frac{3}{4}\mathbf{b}$
 $\overrightarrow{CE} = \overrightarrow{OE} - \overrightarrow{OC}$
 $= \frac{7}{4}\mathbf{b} - (-\frac{1}{2}\mathbf{a} + \frac{3}{2}\mathbf{b})$
 $= \frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{b}$

Since $\overrightarrow{CE} \neq \mu \overrightarrow{EF}$, *C*, *E*, *F* are not collinear. The student is incorrect.

🕰 © 保留版權 All Rights Reserved 2000

Q.10 (a) (i) Put
$$x = 0$$
, $y = \frac{7}{2}$ \therefore the y-intercept is $\frac{7}{2}$.
Put $y = 0$, $x = \frac{7}{4}$ \therefore the x-intercept is $\frac{7}{4}$.

(ii) f(x) is decreasing when $f'(x) \le 0$.

$$f'(x) = \frac{-4(x^2+2) - (7-4x)2x}{(x^2+2)^2}$$
$$= \frac{4x^2 - 14x - 8}{(x^2+2)^2}$$
$$\frac{4x^2 - 14x - 8}{(x^2+2)^2} \le 0$$
$$(2x+1)(x-4) \le 0$$
$$-\frac{1}{2} \le x \le 4$$

(iii) f(x) is increasing when $f'(x) \ge 0$,

i.e. $x \ge 4$ or $x \le -\frac{1}{2}$. f'(x) = 0 when x = 4 or $-\frac{1}{2}$. As f'(x) changes from positive to negative as x increases through $-\frac{1}{2}$, so f(x) attains a maximum at $x = -\frac{1}{2}$. At $x = -\frac{1}{2}$, y = 4: the maximum value of f(x) is 4. As f'(x) changes from negative to positive as

x increases through 4, so f(x) attains a minimum at x = 4.

At x = 4, $y = -\frac{1}{2}$

 \therefore the minimum value of f(x) is $-\frac{1}{2}$.

🕵 © 保留版權 All Rights Reserved 2000

(c) Put
$$x = \sin\theta$$
, $f(\sin\theta) = \frac{7 - 4\sin\theta}{\sin^2\theta + 2} = p$.
The range of possible value of $\sin\theta$ is

The range of possible value of $\sin \theta$ is $-1 \le \sin \theta \le 1$. From the graph in (b), the greatest value of f(x) in the range $-1 \le x \le 1$ is 4.

: the greatest value of p is 4 and the student is correct.

From the graph in (b), f(x) attains its least value at one of the end-points.

$$f(1) = 1$$
, $f(-1) = \frac{11}{3}$.

: the least value of p is 1 and the student is incorrect.

Q.11 (a)
$$w = \cos\theta + i\sin\theta$$
$$w^{2} = \cos 2\theta + i\sin 2\theta$$
$$\frac{1}{w} = \frac{1}{\cos\theta + i\sin\theta}$$
$$= \cos(-\theta) + i\sin(-\theta)$$
$$= \cos\theta - i\sin\theta$$
$$w^{2} + \frac{5}{w} - 2$$
$$= \cos 2\theta + i\sin 2\theta + 5(\cos\theta - i\sin\theta) - 2$$
$$= \cos 2\theta + 5\cos\theta - 2 + i(\sin 2\theta - 5\sin\theta)$$
Since $w^{2} + \frac{5}{w} - 2$ is purely imaginary,
 $\cos 2\theta + 5\cos\theta - 2 = 0$
 $(2\cos^{2}\theta - 1) + 5\cos\theta - 2 = 0$
 $2\cos^{2}\theta + 5\cos\theta - 3 = 0$
 $\cos\theta = \frac{1}{2}$ or $\cos\theta = -3$ (rejected)
 $\theta = \frac{\pi}{3}$ ($\because 0 < \theta < \pi$)
Imaginary part
 $= \sin\frac{2\pi}{3} - 5\sin\frac{\pi}{3} \neq 0$
 $\therefore w = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$
(b) (i) $\left|\frac{z_{2}}{z_{1}}\right| = |w|$ $= 1$
 $\arg(\frac{z_{2}}{z_{1}}) = \arg(w)$ $= \frac{\pi}{3}$

G 保留版權 All Rights Reserved 2000

(ii)
$$\left| \frac{z_2}{z_1} \right| = \frac{|z_2|}{|z_1|} = 1$$

 $\therefore |z_2| = |z_1|$
i.e. $OA = OB$.
 $\angle AOB = \arg(z_2) - \arg(z_1)$
 $= \arg(\frac{z_2}{z_1})$
 $= \frac{\pi}{3}$

Since OA = OB, ΔOAB is isosceles.

$$\angle OAB = \angle OBA = \frac{1}{2}(\pi - \frac{\pi}{3}) = \frac{\pi}{3}$$

 $\therefore \Delta OAB$ is equilateral.

Q 保留版權 All Rights Reserved 2000

Q.12 (a) $f(x) = x^2 - 4mx - (5m^2 - 6m + 1)$ Discriminant $\Delta = (-4m)^2 + 4(5m^2 - 6m + 1)$ $= 36m^2 - 24m + 4$ $= 4(9m^2 - 6m + 1)$ $= 4(3m - 1)^2 > 0$ ($\because m > \frac{1}{3}$)

: the equation f(x) = 0 has distinct real roots.

(b) (i)
$$x = \frac{4m \pm \sqrt{\Delta}}{2}$$
$$= 2m \pm (3m - 1)$$
Since $\alpha < \beta$,
$$\alpha = 2m - (3m - 1) = -m + 1$$
$$\beta = 2m + (3m - 1) = 5m - 1$$

(ii) (1) Since
$$4 < \beta < 5$$
,
 $4 < 5m - 1 < 5$
 $5 < 5m < 6$
 $1 < m < \frac{6}{5}$

(2) <u>Sketch A</u>:

Since the coefficient of x^2 in f(x) is positive, the graph of y = f(x) should open upwards. However, the graph in sketch A opens downwards, so sketch A is incorrect.

Sketch B :

Since $\alpha = 1 - m$ and $1 < m < \frac{6}{5}$, $1 - 1 > 1 - m > 1 - \frac{6}{5}$ $0 > \alpha > -\frac{1}{5}$ In short h B, will have them, 1, so of

In sketch *B*, α is less than -1, so sketch *B* is incorrect.

Sketch C:

$$\begin{cases} y = x^{2} - 4mx - (5m^{2} - 6m + 1) \\ y = -1 \end{cases}$$

$$-1 = x^{2} - 4mx - (5m^{2} - 6m + 1) \\ x^{2} - 4mx - (5m^{2} - 6m) = 0 - - - - (*) \\ \text{Discriminant } \Delta = (-4m)^{2} + 4(5m^{2} - 6m) \\ = 36m^{2} - 24m \\ = 12m(3m - 2) \end{cases}$$
Since $1 < m < \frac{6}{5}, \Delta > 0$.

As $\Delta > 0$, equation (*) has real roots, i.e. y = f(x) and y = -1 always have intersecting points. However, the line and the graph in sketch C do not intersect, so sketch C is incorrect.

🔊 🖉 保留版權 All Rights Reserved 2000

Q.13 (a)
$$\tan \angle ARQ = \frac{100 - x}{100}$$

 $\tan\theta = \tan(\angle ARQ + \tan \angle QRB)$
 $= \frac{\tan \angle ARQ + \tan \angle QRB}{1 - (\tan \angle ARQ) (\tan \angle QRB)}$
 $= \frac{\frac{100 - x}{100} + \frac{y}{100}}{1 - (\frac{100 - x}{100}) (\frac{y}{100})}$
 $= \frac{100(100 - x + y)}{10000 - 100y + xy}$
(b) (i) At $t = 0$, $\tan \theta = \frac{PQ}{RQ}$
 $= \frac{100}{100} = 1$.
Since $\angle ARB$ remains unchanged,
 $\frac{100(100 - x + y)}{10000 - 100y + xy} = 1$
 $10000 - 100y + xy = 1$
 $10000 - 100y + 100y = 10000 - 100y + xy$
 $200y - xy = 100x$
 $y = \frac{100x}{200 - x}$
(ii) $\frac{dy}{dt} = \frac{(200 - x)(100) - 100x(-1)}{(200 - x)^2} \frac{dx}{dt}$
 $= \frac{40000}{(200 - x)^2}$
At $t = 40$, $x = 40 \times 2 = 80$.
 $\frac{dy}{dt} = \frac{40000}{(200 - 80)^2}$
 $= \frac{25}{9}$
 \therefore the speed of boat *B* at $t = 40$ is $\frac{25}{9}$ m s⁻¹.

G 保留版權 All Rights Reserved 2000

(iii) From (ii),
$$\frac{dy}{dt} = \frac{40000}{(200-x)^2}$$

 $\frac{dy}{dt} \le 3$
 $\frac{40000}{(200-x)^2} \le 3$
 $200 - x \ge \frac{200}{\sqrt{3}}$
 $x \le 200(1 - \frac{1}{\sqrt{3}})$

When
$$x > 200(1 - \frac{1}{\sqrt{3}}), \frac{dy}{dt} > 3.$$

So it is impossible to keep $\angle ARB$ unchanged before boat A reaches Q.

G 保留版權 All Rights Reserved 2000

- 1. Answer ALL questions in Section A and any THREE questions in Section B.
- 2. All working must be clearly shown.
- 3. Unless otherwise specified, numerical answers must be exact.
- 4. The diagrams in the paper are not necessarily drawn to scale.

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2000

2000-CE-A MATH 2-1

FORMULAS FOR REFERENCE

$\sin\left(A\pm B\right) = \sin A \cos B \pm \cos A \sin B$
$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
$\tan\left(A \pm B\right) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$
$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$
$2\sin A\cos B = \sin (A+B) + \sin (A-B)$
$2\cos A\cos B = \cos (A+B) + \cos (A-B)$
$2\sin A\sin B = \cos (A-B) - \cos (A+B)$

Section A (42 marks) Answer **ALL** questions in this section.

1. Find
$$\int \sqrt{2x+1} \, \mathrm{d}x$$
.

3.

(4 marks)

2. Expand $(1+2x)^7 (2-x)^2$ in ascending powers of x up to the term x^2 . (5 marks)

Figure 1

Figure 1 shows the ellipse $E: \frac{x^2}{16} + \frac{y^2}{9} = 1$. P(-4, 0) and $Q(4\cos\theta, 3\sin\theta)$ are points on *E*, where $0 < \theta < \frac{\pi}{2}$. *R* is a point such that the mid-point of *QR* is the origin *O*.

(a) Write down the coordinates of R in terms of θ .

(b) If the area of $\triangle PQR$ is 6 square units, find the coordinates of Q. (6 marks)

Go on to the next page

2000-CE-A MATH 2–3	-2-
🕰 ©保留版權 All Rights Reserved 20	00

4. Prove, by mathematical induction, that

$$1^{2} - 2^{2} + 3^{2} - 4^{2} + \dots + (-1)^{n-1} n^{2} = (-1)^{n-1} \frac{n(n+1)}{2}$$

for all positive integers n.

(6 marks)

Figure 2

In Figure 2, the coordinates of points A and B are (1, 2) and (2, 0) respectively. Point P divides AB internally in the ratio 1 : r.

(a) Find the coordinates of P in terms of r.

(b) Show that the slope of *OP* is
$$\frac{2r}{2+r}$$
.

(c) If $\angle AOP = 45^{\circ}$, find the value of r.

(6 marks)

The slope at any point (x, y) of a curve *C* is given by $\frac{dy}{dx} = 2x+3$. The line y = -x+1 is a tangent to the curve at point *A*. (See Figure 3.) Find

- (a) the coordinates of A,
- (b) the equation of C. (7 marks)
- (a) By expressing $\cos x \sqrt{3} \sin x$ in the form $r \cos (x + \theta)$, or otherwise, find the general solution of the equation

$$\cos x - \sqrt{3}\sin x = 2.$$

(b) Find the number of points of intersection of the curves $y = \cos x$ and $y = 2 + \sqrt{3} \sin x$ for $0 < x < 9\pi$.

(8 marks)

2000-CE-A MATH 2–5	-4-
🕰 ©保留版權 All Rights Reserved 200	0

Go on to the next page

7.

Section B (48 marks) Answer any THREE questions in this section. Each question carries 16 marks.

8. (a) Find
$$\int \cos 3x \cos x \, dx$$
. (3 marks)

(b) Show that
$$\frac{\sin 5x - \sin x}{\sin x} = 4\cos 3x\cos x$$
.

Hence, or otherwise, find
$$\int \frac{\sin 5x}{\sin x} dx$$
. (4 marks)

(4 marks)

Using a suitable substitution, show that

$$\int_{\pi}^{\frac{\pi}{4}} \frac{\sin 5x}{\sin x} dx = \int_{\pi}^{\frac{\pi}{3}} \frac{\cos 5x}{\cos x} dx.$$
(4)

(d)

(c)

In Figure 4, the curves
$$C_1: y = \frac{\cos 5x}{\cos x}$$
 and $C_2: y = \frac{\sin 5x}{\sin x}$
intersect at the point $(\frac{\pi}{4}, -1)$. Find the area of the shaded region
bounded by C_1, C_2 and the line $x = \frac{\pi}{3}$. (5 marks)

2000-CE-A MATH 2-6 - 5 -

9. Given a family of circles

$$F : x^{2} + y^{2} + (4k+4)x + (3k+1)y - (8k+8) = 0,$$

where k is real. C_1 is the circle $x^2 + y^2 - 2y = 0$.

- (a) Show that
 - (i) C_1 is a circle in F,
 - (ii) C_1 touches the x-axis. (4 marks)
- (b) Besides C_1 , there is another circle C_2 in F which also touches the x-axis.
 - (i) Find the equation of C_2 .
 - (ii) Show that C_1 and C_2 touch externally.

(7 marks)

Figure 5 shows the circles C_1 and C_2 in (b). *L* is a common tangent to C_1 and C_2 . C_3 is a circle touching C_2 , *L* and the *x*-axis but it is not in *F*. (See Figure 5.) Find the equation of C_3 .

(Hint : The centres of the three circles are collinear.)

(5 marks)

Go on to the next page

Figure 6(a) shows a parabola $P: y^2 = 4x$. $A(t_1^2, 2t_1)$ and $C(t_2^2, 2t_2)$ are two distinct points on P, where $t_1 < 0 < t_2$. L_1 and L_2 are tangents to P at A and C respectively and they intersect at point B. Let M be the midpoint of AC.

- (a) Show that
 - (i) the equation of L_1 is $x t_1 y + t_1^2 = 0$,
 - (ii) the coordinates of B are $(t_1t_2, t_1 + t_2)$,
 - (iii) *BM* is parallel to the *x*-axis.

(7 marks)

10.

Suppose L_1 and L_2 are perpendicular to each other and D is a point such that *ABCD* is a rectangle. (See Figure 6(b).)

- (i) Find the value of $t_1 t_2$.
- (ii) Show that the coordinates of D are $(t_1^2 + t_2^2 + 1, t_1 + t_2)$.
- (iii) Find the equation of the locus of D as A and C move along the parabola P.

(9 marks)

(b)

11. (a)

In Figure 7 (a), the shaded region is bounded by the circle $x^2 + y^2 = r^2$, the x-axis, the y-axis and the line y = -h, where h > 0. If the shaded region is revolved about the y-axis, show that the volume of the solid generated is $(r^2h - \frac{1}{3}h^3)\pi$ cubic units. (4 marks)

(b)

In Figure 7 (b), A and C are points on the x-axis and y-axis respectively, AB is an arc of the circle $3x^2 + 3y^2 = 89$ and BC is a segment of the line y = -1. A mould is formed by revolving AB and BC about the y-axis. Using (a), or otherwise, show that the capacity of the mould is $\frac{88\pi}{3}$ cubic units.

(2 marks)

A hemispherical pot of inner radius 4 units is completely filled with molten gold. (See Figure 7 (c).) The molten gold is then poured into the mould mentioned in (b) by steadily tilting the pot. Suppose the pot is tilted through an angle θ and *G* is the centre of the rim of the pot. (See Figure 7 (d).)

- (i) Find, in terms of θ ,
 - (1) the distance between G and the surface of the molten gold remaining in the pot,
 - (2) the volume of gold poured into the mould.
- (ii) When the mould is completely filled with molten gold, show that

 $8\sin^3\theta - 24\sin\theta + 11 = 0.$

Hence find the value of θ .

(10 marks)

Go on to the next page

(c)

12. (a)

In Figure 8 (a), a triangle *ABC* is inscribed in a circle with centre *O* and radius *r*. AB = c, BC = a and CA = b. Let $\angle BCA = \theta$.

(i) Express $\cos \theta$ in terms of a, b and c.

(ii) Show that
$$r = \frac{c}{2\sin\theta}$$
.

(iii) Using (i) and (ii), or otherwise, show that

$$r = \frac{abc}{\sqrt{4a^2b^2 - (a^2 + b^2 - c^2)^2}} \,.$$

(7 marks)

(b) In this part, numerical answers should be given correct to two significant figures.

12. (b) (continued)

Figure 8(c)

Figure 8 (b) shows a pedestrian walkway joining the horizontal ground and the first floor of a building. To estimate its length, the walkway is modelled by a circular arc A'B'C' as shown in Figure 8 (c), where A' denotes the entrance to the walkway on the ground and C' the exit leading to the first floor of the building. P and Q are the feet of perpendiculars from B' and C' to the ground respectively. It is given that A'P = 35 m, PQ = 21 m, B'P = 5 m, C'Q = 8 m and $\angle A'PQ = 120^{\circ}$.

- (i) Find the radius of the circular arc A'B'C'.
- (ii) Estimate the length of the walkway.

(9 marks)

END OF PAPER

2000

Additional Mathematics

Paper 2

Section A

- 1. $\frac{1}{3}(2x+1)^{\frac{3}{2}}+c$, where c is a constant
- 2. $4+52x+281x^2+\cdots$
- 3. (a) $(-4\cos\theta, -3\sin\theta)$

(b)
$$(2\sqrt{3}, \frac{3}{2})$$

5. (a)
$$(\frac{2+r}{1+r}, \frac{2r}{1+r})$$

(c)
$$\frac{2}{5}$$

6. (a)
$$(-2, 3)$$

(b)
$$y = x^2 + 3x + 5$$

- 7. (a) $x = 2n\pi \frac{\pi}{3}$, where *n* is an integer
 - (b) 4

Q保留版權 All Rights Reserved 2000

Section B

Q.8 (a)
$$\int \cos 3x \cos x \, dx = \int \frac{1}{2} (\cos 4x + \cos 2x) \, dx$$

= $\frac{1}{8} \sin 4x + \frac{1}{4} \sin 2x + c$, where *c* is a constant

(b)
$$\frac{\sin 5x - \sin x}{\sin x} = \frac{2 \sin 2x \cos 3x}{\sin x}$$
$$= \frac{2(2 \sin x \cos x) \cos 3x}{\sin x}$$
$$= 4 \cos x \cos 3x$$
$$\int \frac{\sin 5x}{\sin x} dx = \int (1 + 4 \cos 3x \cos x) dx$$
$$= x + 4(\frac{\sin 4x}{8} + \frac{\sin 2x}{4}) + c, \text{ where } c \text{ is a constant}$$
$$= x + \frac{1}{2} \sin 4x + \sin 2x + c$$

(c) Put
$$x = \frac{\pi}{2} - \theta$$
:

$$\int \frac{\frac{\pi}{4}}{\frac{\pi}{6}} \frac{\sin 5x}{\sin x} dx = \int \frac{\frac{\pi}{4}}{\frac{\pi}{3}} \frac{\sin 5(\frac{\pi}{2} - \theta)}{\sin(\frac{\pi}{2} - \theta)} (-d\theta)$$
$$= \int \frac{\frac{\pi}{3}}{\frac{\pi}{4}} \frac{\cos 5\theta}{\cos \theta} d\theta$$
$$= \int \frac{\frac{\pi}{3}}{\frac{\pi}{4}} \frac{\cos 5x}{\cos x} dx$$

(d) Area of shaded region \bullet^{π}

$$= \int \frac{\pi}{\frac{\pi}{4}} \left(\frac{\cos 5x}{\cos x} - \frac{\sin 5x}{\sin x} \right) dx$$

$$= \int \frac{\pi}{\frac{\pi}{4}} \frac{\cos 5x}{\cos x} dx - \int \frac{\pi}{\frac{\pi}{4}} \frac{\sin 5x}{\sin x} dx$$

$$= \int \frac{\pi}{\frac{\pi}{6}} \frac{\sin 5x}{\sin x} dx - \int \frac{\pi}{\frac{\pi}{4}} \frac{\sin 5x}{\sin x} dx \quad (\text{using (c)})$$

$$= [x + \frac{1}{2} \sin 4x + \sin 2x] \frac{\pi}{\frac{\pi}{6}} - [x + \frac{1}{2} \sin 4x + \sin 2x] \frac{\pi}{\frac{\pi}{4}}$$

$$= 2 - \sqrt{3}$$

- Q.9 (i) Put k = -1 into F, the equation becomes (a) $x^{2} + y^{2} + (-4+4)x + (-3+1)y - (-8+8) = 0$ i.e. $x^2 + y^2 - 2y = 0$. \therefore C_1 is a circle in F.
 - (ii) Co-ordinates of centre of $C_1 = (0, 1)$. radius of $C_1 = 1$ Since the y-coordinate of centre is equal to the radius, C_1 touches the x-axis.
 - (i) Put y = 0 in F: (b)

 $x^{2} + (4k+4)x - (8k+8) = 0$ Since the circle touches the *x*-axis, $(4k+4)^2 + 4(8k+8) = 0$ $16k^2 + 64k + 48 = 0$ 16(k+1)(k+3) = 0k = -1 (rejected) or k = -3, \therefore the equation of C_2 is $x^{2} + y^{2} + [4(-3) + 4]x + [3(-3) + 1]y - [(-3) \times 8 + 8] = 0$ $x^{2} + y^{2} - 8x - 8y + 16 = 0$

(ii) Co-ordinates of centre of $C_1 = (0, 1)$, radius = 1. Co-ordinates of centre of $C_2 = (4, 4)$, radius = 4. Distance between centres $=\sqrt{(4-0)^2 + (4-1)^2}$ = 5 = sum of radii of C_1 and C_2 \therefore C_1 and C_2 touch externally.

🕰 ©保留版權 All Rights Reserved 2000

Let radius of C_3 be r and coordinates of its centre be (c) (*a*, *r*).

Considering the similar triangles,

 $\frac{r+4}{1+4} = \frac{r-4}{4-1}$ 3r+12 = 5r-20r = 16 $\frac{a-4}{4-0} = \frac{r+4}{4+1}$ $=\frac{16+4}{4+1}$ a=20

: the equation of C_3 is $(x-20)^2 + (y-16)^2 = 256$.

🔊 🖉 保留版權 All Rights Reserved 2000

Q.10 (a) (i)
$$y^2 = 4x$$

 $2y \frac{dy}{dx} = 4$
 $\frac{dy}{dx} = \frac{2}{y}$
At point A, $\frac{dy}{dx} = \frac{2}{2t_1} = \frac{1}{t_1}$
Equation of L_1 is
 $\frac{y - 2t_1}{x - t_1^2} = \frac{1}{t_1}$
 $t_1y - 2t_1^2 = x - t_1^2$
 $x - t_1y + t_1^2 = 0$

(ii) Equation of L_2 is $x - t_2 y + t_2^2 = 0$.

$$\begin{cases} x - t_1 y + t_1^2 = 0 & ----(1) \\ x - t_2 y + t_2^2 = 0 & ----(2) \end{cases}$$

(1) - (2) : $(t_2 - t_1)y + (t_1^2 - t_2^2) = 0$
 $y = t_1 + t_2$
 $x = t_1(t_1 + t_2) - t_1^2 = t_1 t_2$
 \therefore the coordinates of *B* are $(t_1 t_2, t_1 + t_2)$.

(iii)The coordinates of *M* are
$$(\frac{t_1^2 + t_2^2}{2}, \frac{2t_1 + 2t_2}{2})$$
,
i.e. $(\frac{t_1^2 + t_2^2}{2}, t_1 + t_2)$.

As the *y*-coordinates of *B* and \overline{M} are equal, *BM* is parallel to the *x*-axis.

(b) (i) (Slope of
$$L_1$$
) (Slope of L_2) = -1
 $(\frac{1}{t_1})(\frac{1}{t_2}) = -1$
 $t_1t_2 = -1$

G 保留版權 All Rights Reserved 2000

(ii) Since ABCD is a rectangle, mid-point of BD coincides with mid-point of AC, i.e. point M.

$$\frac{x+t_1t_2}{2} = \frac{t_1^2 + t_2^2}{2}$$
$$x = t_1^2 + t_2^2 - t_1t_2$$
$$= t_1^2 + t_2^2 + 1 \quad (\because t_1t_2 = -1)$$

Since *BD* is parallel to the *x*-axis, the *y*-coordinate of D = y-coordinate of $B = t_1 + t_2$. \therefore the coordinates of *D* are $(t_1^2 + t_2^2 + 1, t_1 + t_2)$.

(iii) Let (x, y) be the coordinates of *D*.

$$\begin{cases} x = t_1^2 + t_2^2 + 1 \\ y = t_1 + t_2 \end{cases}$$
$$x = (t_1 + t_2)^2 - 2t_1t_2 + 1 \\ = y^2 - 2(-1) + 1 \\ x = y^2 + 3 \end{cases}$$

: the equation of the locus is $x - y^2 - 3 = 0$.

🕰 ©保留版權 All Rights Reserved 2000

Q.11 (a) Volume =
$$\int_{-h}^{0} \pi x^2 dy$$

= $\int_{-h}^{0} \pi (r^2 - y^2) dy$
= $\pi [r^2 y - \frac{1}{3} y^3]_{-h}^{0}$
= $\pi (r^2 h - \frac{1}{3} h^3)$ cubic units
(b) Put $h = 1, r = \sqrt{\frac{89}{2}}$:

Put
$$h = 1, r = \sqrt{\frac{37}{3}}$$
:
Using (a),
capacity of the mould $= \pi \left[\frac{89}{3}(1) - \frac{1}{3}(1)^3\right]$
 $= \frac{88\pi}{3}$ cubic units

(c) (i) (1) Distance = $4\sin\theta$.

(2) Put
$$r = 4$$
, $h = 4\sin\theta$.
Using (a), amount of gold poured into the pot
 $= \pi [4^2 (4\sin\theta) - \frac{1}{3} (4\sin\theta)^3]$
 $= \pi (64\sin\theta - \frac{64}{3}\sin^3\theta)$

(ii) When the mould is completely filled,

$$\pi (64\sin\theta - \frac{64}{3}\sin^3\theta) = \frac{88\pi}{3}$$

$$64\sin^3\theta - 192\sin\theta + 88 = 0$$

$$8\sin^3\theta - 24\sin\theta + 11 = 0 - - - - (*)$$
Put $\sin\theta = \frac{1}{2}$:

$$8\sin^3\theta - 24\sin\theta + 11 = 0.$$

$$\therefore \sin\theta = \frac{1}{2} \text{ is a root of } (*)$$

$$(2\sin\theta - 1) (4\sin^2\theta + 2\sin\theta - 11) = 0$$

$$\sin\theta = \frac{1}{2} \text{ or } \sin\theta = \frac{-2\pm\sqrt{180}}{8} \text{ (rejected)}$$

$$\therefore \sin\theta = \frac{1}{2}$$

$$\theta = \frac{\pi}{6}$$

G 保留版權 All Rights Reserved 2000

$$\left(\frac{c}{2r}\right)^{2} + \left(\frac{a^{2} + b^{2} - c^{2}}{2ab}\right)^{2} = 1$$
$$\frac{c^{2}}{4r^{2}} = 1 - \frac{(a^{2} + b^{2} - c^{2})^{2}}{4a^{2}b^{2}}$$
$$r^{2} = \frac{a^{2}b^{2}c^{2}}{4a^{2}b^{2} - (a^{2} + b^{2} - c^{2})^{2}}$$
$$r = \frac{abc}{\sqrt{4a^{2}b^{2} - (a^{2} + b^{2} - c^{2})^{2}}}$$

(b) (i) Consider
$$\Delta A'B'C'$$
: $A'B' = \sqrt{(A'P)^2 + (PB')^2}$
= $\sqrt{35^2 + 5^2}$
= $\sqrt{1250}$
 $B'C' = \sqrt{(PQ)^2 + (QC' - PB')^2}$
= $\sqrt{21^2 + (8-5)^2}$
= $\sqrt{450}$

🔊 🖾 📽 🖓 🖓 🖓 🖓

$$(A'Q)^{2} = (A'P)^{2} + (PQ)^{2} - 2(A'P) (PQ)^{2} \cos \angle A'PQ$$

= 35² + 21² - 2(35) (21) cos 120°
= 2401
$$A'C' = \sqrt{(A'Q)^{2} + (QC')^{2}}$$

= $\sqrt{2401 + 8^{2}}$
= $\sqrt{2465}$

Using (a) (iii), put $a = \sqrt{450}$, $b = \sqrt{2465}$, $c = \sqrt{1250}$: $r = \frac{\sqrt{1250} \sqrt{450} \sqrt{2465}}{\sqrt{4(450) (2465) - (450 + 2465 - 1250)^2}}$ = 29 m (correct to 2 sig. figures) ∴ the radius of arc A'B'C' is 29 m.

(ii)

 ϕ be the angle subtended by arc A'B'C' at O'. Consider $\Delta O'A'N$ (N is the mid-point of A'C')

$$\sin \frac{\phi}{2} = \frac{\frac{1}{2}A'C'}{r}$$
$$\sin \frac{\phi}{2} = \frac{\frac{1}{2}\sqrt{2465}}{28.86}$$
$$= 0.8602$$
$$\phi = 2.07$$
Length of walkway

= length of $\widehat{A'B'C'} = r\phi$ = 28.86 (2.07) = 60 m (correct to 2 sig. figures) ∴ the length of the walkway is 60 m.

