$8.30 \mathrm{am}-10.30 \mathrm{am}$（2 hours）<br>This paper must be answered in English

1．Answer ALL questions in Section A and any THREE questions in Section B．
2．All working must be clearly shown．
3．Unless otherwise specified，numerical answers must be exact．
4．In this paper，vectors may be represented by bold－type letters such as $\mathbf{u}$ ，but candidates are expected to use appropriate symbols such as $\overrightarrow{\mathrm{u}}$ in their working．

5．The diagrams in the paper are not necessarily drawn to scale．

## FORMULAS FOR REFERENCE

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
& \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \\
& \cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} \\
& 2 \sin A \cos B=\sin (A+B)+\sin (A-B) \\
& 2 \cos A \cos B=\cos (A+B)+\cos (A-B) \\
& 2 \sin A \sin B=\cos (A-B)-\cos (A+B)
\end{aligned}
$$

Section A（42 marks）
Answer ALL questions in this section．

1．Solve $\frac{1}{x}>1$ ．
（3 marks）

2．Find
（a）$\frac{\mathrm{d}}{\mathrm{d} x} \sin ^{2} x$ ，
（b）$\frac{\mathrm{d}}{\mathrm{d} x} \sin ^{2}(3 x+1)$ ．
（4 marks）

3．（a）Show that $\frac{1}{\sqrt{x+\Delta x}}-\frac{1}{\sqrt{x}}=\frac{-\Delta x}{\sqrt{x}(\sqrt{x+\Delta x})(\sqrt{x}+\sqrt{x+\Delta x})}$ ．
（b）Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{\sqrt{x}}\right)$ from first principles．

4．$\quad P(-1,2)$ is a point on the curve $(x+2)(y+3)=5$ ．Find
（a）the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $P$ ，
（b）the equation of the tangent to the curve at $P$ ．

5．（a）Solve $|1-x|=2$ ．
（b）By considering the cases $x \leq 1$ and $x>1$ ，or otherwise，solve $|1-x|=x-1$ ．

6．Express the complex number $\frac{1+\sqrt{3} i}{\sqrt{3}+i}$ in polar form．
Hence find the argument $\theta$ of $\left(\frac{1+\sqrt{3} i}{\sqrt{3}+i}\right)^{2000}$ ，where $\theta$ is limited to the principal values $-\pi<\theta \leq \pi$ ．
(6 marks)

7．$\alpha$ and $\beta$ are the roots of the quadratic equation

$$
x^{2}+(p-2) x+p=0
$$

where $p$ is real．
（a）Express $\alpha+\beta$ and $\alpha \beta$ in terms of $p$ ．
（b）If $\alpha$ and $\beta$ are real such that $\alpha^{2}+\beta^{2}=11$ ，find the value（s）of p．
（7 marks）
8.


Figure 1

In Figure $1, \overrightarrow{O A}=\mathbf{i}, \overrightarrow{O B}=\mathbf{j} . C$ is a point on $O A$ produced such that $A C=k$ ，where $k>0 . D$ is a point on $B C$ such that $B D: D C=1: 2$ ．
（a）Show that $\overrightarrow{O D}=\frac{1+k}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}$ ．
（b）If $\overrightarrow{O D}$ is a unit vector，find
（i）$k$ ，
（ii）$\angle B O D$ ，giving your answer correct to the nearest degree．
（7 marks）

## Section B（48 marks）

Answer any THREE questions in this section．
Each question carries 16 marks．
9.


In Figure 2，$O A C$ is a triangle．$B$ and $D$ are points on $A C$ such that $A D=D B=B C . F$ is a point on $O D$ produced such that $O D=D F . E$ is a point on $O B$ produced such that $O E=k(O B)$ ，where $k>1$ ．Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$ ．
（a）（i）Express $O D$ in terms of $\mathbf{a}$ and $\mathbf{b}$ ．
（ii）Show that $\overrightarrow{O C}=-\frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b}$ ．
（iii）Express $\overrightarrow{E F}$ in terms of $k$ ，a and $\mathbf{b}$ ．
（b）It is given that $O A=3, O B=2$ and $\angle A O B=60^{\circ}$ ．
（i）Find $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{b} \cdot \mathbf{b}$ ．
（ii）Suppose that $\angle O E F=90^{\circ}$ ．
（1）Find the value of $k$ ．
（2）A student states that points $C, E$ and $F$ are collinear．Explain whether the student is correct．
（11 marks）

10．Let $\mathrm{f}(x)=\frac{7-4 x}{x^{2}+2}$ ．
（a）（i）Find the $x$－and $y$－intercepts of the curve $y=\mathrm{f}(x)$ ．
（ii）Find the range of values of $x$ for which $\mathrm{f}(x)$ is decreasing．
（iii）Show that the maximum and minimum values of $\mathrm{f}(x)$ are 4 and $-\frac{1}{2}$ respectively．
（9 marks）
（b）In Figure 3，sketch the curve $y=\mathrm{f}(x)$ for $-2 \leq x \leq 5$ ．
（3 marks）
（c）Let $p=\frac{7-4 \sin \theta}{\sin ^{2} \theta+2}$ ，where $\theta$ is real．

From the graph in（b），a student concludes that the greatest and least values of $p$ are 4 and $-\frac{1}{2}$ respectively．Explain whether the student is correct．If not，what should be the greatest and least values of $p$ ？
（4 marks）


If you attempt Question 10，fill in the first three boxes above and tie this sheet into your answer book．

10．（b）（continued）


Figure 3

## This is a blank page．

11．（a）Let $w=\cos \theta+i \sin \theta$ ，where $0<\theta<\pi$ ．It is given that the complex number $w^{2}+\frac{5}{w}-2$ is purely imaginary．

Show that $2 \cos ^{2} \theta+5 \cos \theta-3=0$ ．

Hence，or otherwise，find $w$ ．
（b）$\quad A$ and $B$ are two points in an Argand diagram representing two distinct non－zero complex numbers $z_{1}$ and $z_{2}$ respectively．Suppose that $z_{2}=w z_{1}$ ，where $w$ is the complex number found in（a）．
（i）Find $\left|\frac{z_{2}}{z_{1}}\right|$ and $\arg \left(\frac{z_{2}}{z_{1}}\right)$ ．
（ii）Let $O$ be the point representing the complex number 0 ． What type of triangle is $\triangle O A B$ ？Explain your answer．
（8 marks）

12．Consider the function $\mathrm{f}(x)=x^{2}-4 m x-\left(5 m^{2}-6 m+1\right)$ ，where $m>\frac{1}{3}$ ．
（a）Show that the equation $\mathrm{f}(x)=0$ has distinct real roots． （3 marks）
（b）Let $\alpha, \beta$ be the roots of the equation $\mathrm{f}(x)=0$ ，where $\alpha<\beta$ ．
（i）Express $\alpha$ and $\beta$ in terms of $m$ ．
（ii）Furthermore，it is known that $4<\beta<5$ ．
（1）Show that $1<m<\frac{6}{5}$ ．
（2）Figure 4 shows three sketches of the graph of $y=\mathrm{f}(x)$ drawn by three students．Their teacher points out that the three sketches are all incorrect． Explain why each of the sketches is incorrect．


Figure 4
12.
（b）
（ii）
（2）
（continued）



Figure 4 （continued）
（13 marks）
13.


Figure 5

Two boats $A$ and $B$ are initially located at points $P$ and $Q$ in a lake respectively，where $Q$ is at a distance 100 m due north of $P . R$ is a point on the lakeside which is at a distance 100 m due west of $Q$ ．（See Figure 5．） Starting from time（in seconds）$t=0$ ，boats $A$ and $B$ sail northwards．At time $t$ ，let the distances travelled by $A$ and $B$ be $x \mathrm{~m}$ and $y \mathrm{~m}$ respectively，where $0 \leq x \leq 100$ ．Let $\angle A R B=\theta$ ．
（a）Express $\tan \angle A R Q$ in terms of $x$ ．
Hence show that $\tan \theta=\frac{100(100-x+y)}{10000-100 y+x y}$ ．（4 marks）
（b）Suppose boat $A$ sails with a constant speed of $2 \mathrm{~m} \mathrm{~s}^{-1}$ and $B$ adjusts its speed continuously so as to keep the value of $\angle A R B$ unchanged．
（i）Using（a），show that $y=\frac{100 x}{200-x}$ ．
（ii）Find the speed of boat $B$ at $t=40$ ．
（iii）Suppose the maximum speed of boat $B$ is $3 \mathrm{~m} \mathrm{~s}^{-1}$ ． Explain whether it is possible to keep the value of $\angle A R B$ unchanged before boat $A$ reaches $Q$ ．
（12 marks）

## END OF PAPER

Additional Mathematics
Paper 1

## Section A

1． $0<x<1$

2．（a） $2 \sin x \cos x$
（b） $6 \sin (3 x+1) \cos (3 x+1)$
3．（b）$\frac{-\sqrt{x}}{2 x^{2}}$
4．（a）-5
（b） $5 x+y+3=0$
5．（a）$x=-1$ or 3
（b）$x \geq 1$
6． $\cos \frac{\pi}{6}+i \sin \frac{\pi}{6},-\frac{2 \pi}{3}$
7．（a） $2-p, p$
（b）-1
8．（b）（i）$\sqrt{5}-1$
（ii） $48^{\circ}$
－（C）保留版權 All Rights Reserved 2000

## Section B

Q． $9 \quad$（a）（i） $\overrightarrow{O D}=\frac{\mathbf{a}+\mathbf{b}}{2}$
（ii） $\overrightarrow{O B}=\frac{\overrightarrow{O A}+2 \overrightarrow{O C}}{1+2}$

$$
\begin{aligned}
& \mathbf{b}=\frac{\mathbf{a}+2 \overrightarrow{O C}}{3} \\
& \overrightarrow{O C}=-\frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b}
\end{aligned}
$$

（iii） $\overrightarrow{E F}=\overrightarrow{O F}-\overrightarrow{O E}$

$$
\begin{aligned}
& =2 \overrightarrow{O D}-k \overrightarrow{O B} \\
& =2\left(\frac{\mathbf{a}+\mathbf{b}}{2}\right)-k \mathbf{b} \\
& =\mathbf{a}+(1-k) \mathbf{b}
\end{aligned}
$$

（b）（i） $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \angle A O B$

$$
\begin{aligned}
& =3(2) \cos 60^{\circ} \\
& =3 \\
\mathbf{b} \cdot \mathbf{b} & =|\mathbf{b}|^{2}=4
\end{aligned}
$$

（ii）（1） $\overrightarrow{O E} \cdot \overrightarrow{E F}=0$

$$
\begin{aligned}
& k \mathbf{b} \cdot[\mathbf{a}+(1-k) \mathbf{b}]=0 \\
& k \mathbf{a} \cdot \mathbf{b}+k(1-k) \mathbf{b} \cdot \mathbf{b}=0 \\
& 3 k+4 k(1-k)=0 \\
& 7 k-4 k^{2}=0 \\
& k=0 \text { (rejected) or } k=\frac{7}{4} \\
& \therefore k=\frac{7}{4} .
\end{aligned}
$$

（2）Put $k=\frac{7}{4}$ ：

$$
\begin{aligned}
\overrightarrow{E F} & =\mathbf{a}+\left(1-\frac{7}{4}\right) \mathbf{b}=\mathbf{a}-\frac{3}{4} \mathbf{b} \\
\overrightarrow{C E} & =\overrightarrow{O E}-\overrightarrow{O C} \\
& =\frac{7}{4} \mathbf{b}-\left(-\frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b}\right) \\
& =\frac{1}{2} \mathbf{a}+\frac{1}{4} \mathbf{b}
\end{aligned}
$$

Since $\overrightarrow{C E} \neq \mu \overrightarrow{E F}, C, E, F$ are not collinear．The student is incorrect．

Q． 10 （a）（i）Put $x=0, y=\frac{7}{2} \quad \therefore$ the $y$－intercept is $\frac{7}{2}$ ．
Put $y=0, x=\frac{7}{4} \quad \therefore$ the $x$－intercept is $\frac{7}{4}$ ．
（ii） $\mathrm{f}(x)$ is decreasing when $\mathrm{f}^{\prime}(x) \leq 0$ ．

$$
\begin{aligned}
& \mathrm{f}^{\prime}(x)=\frac{-4\left(x^{2}+2\right)-(7-4 x) 2 x}{\left(x^{2}+2\right)^{2}} \\
& \quad=\frac{4 x^{2}-14 x-8}{\left(x^{2}+2\right)^{2}} \\
& \frac{4 x^{2}-14 x-8}{\left(x^{2}+2\right)^{2}} \leq 0 \\
& (2 x+1)(x-4) \leq 0 \\
& -\frac{1}{2} \leq x \leq 4
\end{aligned}
$$

（iii） $\mathrm{f}(x)$ is increasing when $\mathrm{f}^{\prime}(x) \geq 0$ ，
i．e．$x \geq 4$ or $x \leq-\frac{1}{2}$ ．
$\mathrm{f}^{\prime}(x)=0$ when $x=4$ or $-\frac{1}{2}$ ．
As $\mathrm{f}^{\prime}(x)$ changes from positive to negative as $x$ increases through $-\frac{1}{2}$ ，so $\mathrm{f}(x)$ attains a maximum at $x=-\frac{1}{2}$ ．
At $x=-\frac{1}{2}, y=4$
$\therefore$ the maximum value of $\mathrm{f}(x)$ is 4 ．
As $\mathrm{f}^{\prime}(x)$ changes from negative to positive as
$x$ increases through 4，so $\mathrm{f}(x)$ attains a
minimum at $x=4$ ．
At $x=4, y=-\frac{1}{2}$
$\therefore$ the minimum value of $\mathrm{f}(x)$ is $-\frac{1}{2}$ ．

（c）Put $x=\sin \theta, \mathrm{f}(\sin \theta)=\frac{7-4 \sin \theta}{\sin ^{2} \theta+2}=p$ ．
The range of possible value of $\sin \theta$ is $-1 \leq \sin \theta \leq 1$ ．
From the graph in（b），the greatest value of $\mathrm{f}(x)$ in the range $-1 \leq x \leq 1$ is 4 ．
$\therefore$ the greatest value of $p$ is 4 and the student is correct．
From the graph in（b）， $\mathrm{f}(x)$ attains its least value at one of the end－points．
$f(1)=1, f(-1)=\frac{11}{3}$ ．
$\therefore$ the least value of $p$ is 1 and the student is incorrect．

Q． 11 （a）$w=\cos \theta+i \sin \theta$
$w^{2}=\cos 2 \theta+i \sin 2 \theta$
$\frac{1}{w}=\frac{1}{\cos \theta+i \sin \theta}$
$=\cos (-\theta)+i \sin (-\theta)$
$=\cos \theta-i \sin \theta$
$w^{2}+\frac{5}{w}-2$
$=\cos 2 \theta+i \sin 2 \theta+5(\cos \theta-i \sin \theta)-2$
$=\cos 2 \theta+5 \cos \theta-2+i(\sin 2 \theta-5 \sin \theta)$
Since $w^{2}+\frac{5}{w}-2$ is purely imaginary，
$\cos 2 \theta+5 \cos \theta-2=0$
$\left(2 \cos ^{2} \theta-1\right)+5 \cos \theta-2=0$
$2 \cos ^{2} \theta+5 \cos \theta-3=0$
$\cos \theta=\frac{1}{2}$ or $\cos \theta=-3 \quad$（rejected）
$\theta=\frac{\pi}{3} \quad(\because 0<\theta<\pi)$
Imaginary part

$$
\begin{aligned}
& =\sin \frac{2 \pi}{3}-5 \sin \frac{\pi}{3} \neq 0 \\
& \therefore w=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}
\end{aligned}
$$

（b）（i）$\left|\frac{z_{2}}{z_{1}}\right|=|w|$

$$
\begin{aligned}
\arg \left(\frac{z_{2}}{z_{1}}\right) & =\arg (w) \\
& =\frac{\pi}{3}
\end{aligned}
$$

（ii）$\left|\frac{z_{2}}{z_{1}}\right|=\frac{\left|z_{2}\right|}{\left|z_{1}\right|}=1$
$\therefore\left|z_{2}\right|=\left|z_{1}\right|$
i．e．$O A=O B$ ．
$\angle A O B=\arg \left(z_{2}\right)-\arg \left(z_{1}\right)$
$=\arg \left(\frac{z_{2}}{z_{1}}\right)$
$=\frac{\pi}{3}$
Since $O A=O B, \triangle O A B$ is isosceles．
$\angle O A B=\angle O B A=\frac{1}{2}\left(\pi-\frac{\pi}{3}\right)=\frac{\pi}{3}$
$\therefore \triangle O A B$ is equilateral．

5A．（保留版權 All Rights Reserved 2000

Q． 12 （a） $\mathrm{f}(x)=x^{2}-4 m x-\left(5 m^{2}-6 m+1\right)$
Discriminant $\Delta=(-4 m)^{2}+4\left(5 m^{2}-6 m+1\right)$

$$
=36 m^{2}-24 m+4
$$

$$
=4\left(9 m^{2}-6 m+1\right)
$$

$$
=4(3 m-1)^{2}>0 \quad\left(\because m>\frac{1}{3}\right)
$$

$\therefore$ the equation $\mathrm{f}(x)=0$ has distinct real roots．
（b）
（i）$x=\frac{4 m \pm \sqrt{\Delta}}{2}$

$$
=2 m \pm(3 m-1)
$$

Since $\alpha<\beta$ ，

$$
\begin{aligned}
& \alpha=2 m-(3 m-1)=-m+1 \\
& \beta=2 m+(3 m-1)=5 m-1
\end{aligned}
$$

（ii）（1）Since $4<\beta<5$ ，
$4<5 m-1<5$
$5<5 m<6$
$1<m<\frac{6}{5}$
（2）Sketch $A$ ：
Since the coefficient of $x^{2}$ in $\mathrm{f}(x)$ is positive，the graph of $y=\mathrm{f}(x)$ should open upwards．
However，the graph in sketch $A$ opens downwards，so sketch $A$ is incorrect．

Sketch $B$ ：
Since $\alpha=1-m$ and $1<m<\frac{6}{5}$ ，
$1-1>1-m>1-\frac{6}{5}$
$0>\alpha>-\frac{1}{5}$
In sketch $B, \alpha$ is less than -1 ，so sketch $B$ is incorrect．

Sketch $C$ ：

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=x^{2}-4 m x-\left(5 m^{2}-6 m+1\right) \\
y=-1
\end{array}\right. \\
& \begin{aligned}
-1 & =x^{2}-4 m x-\left(5 m^{2}-6 m+1\right)
\end{aligned} \\
& \begin{aligned}
x^{2}-4 m x-\left(5 m^{2}-6 m\right)=0----\left(^{*}\right)
\end{aligned} \\
& \begin{aligned}
\text { Discriminant } \Delta & =(-4 m)^{2}+4\left(5 m^{2}-6 m\right) \\
& =36 m^{2}-24 m \\
& =12 m(3 m-2)
\end{aligned}
\end{aligned}
$$

Since $1<m<\frac{6}{5}, \Delta>0$ ．
As $\Delta>0$ ，equation $\left(^{*}\right)$ has real roots，
i．e．$y=\mathrm{f}(x)$ and $y=-1$ always have intersecting points．However，the line and the graph in sketch $C$ do not intersect，so sketch $C$ is incorrect．

Q． 13 （a） $\tan \angle A R Q=\frac{100-x}{100}$

$$
\begin{aligned}
\tan \theta & =\tan (\angle A R Q+\angle Q R B) \\
& =\frac{\tan \angle A R Q+\tan \angle Q R B}{1-(\tan \angle A R Q)(\tan \angle Q R B)} \\
& =\frac{\frac{100-x}{100}+\frac{y}{100}}{1-\left(\frac{100-x}{100}\right)\left(\frac{y}{100}\right)} \\
& =\frac{100(100-x+y)}{10000-100 y+x y}
\end{aligned}
$$

（b）（i）At $t=0, \tan \theta=\frac{P Q}{R Q}$

$$
=\frac{100}{100}=1
$$

Since $\angle A R B$ remains unchanged，

$$
\begin{aligned}
& \frac{100(100-x+y)}{10000-100 y+x y}=1 \\
& 10000-100 x+100 y=10000-100 y+x y \\
& 200 y-x y=100 x \\
& y=\frac{100 x}{200-x}
\end{aligned}
$$

（ii）$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{(200-x)(100)-100 x(-1)}{(200-x)^{2}} \frac{\mathrm{~d} x}{\mathrm{~d} t}$

$$
\begin{aligned}
& =\frac{20000}{(200-x)^{2}} \frac{\mathrm{~d} x}{\mathrm{~d} t} \\
& =\frac{40000}{(200-x)^{2}}
\end{aligned}
$$

At $t=40, x=40 \times 2=80$ ．

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} t} & =\frac{40000}{(200-80)^{2}} \\
& =\frac{25}{9}
\end{aligned}
$$

$\therefore$ the speed of boat $B$ at $t=40$ is $\frac{25}{9} \mathrm{~m} \mathrm{~s}^{-1}$ ．
（iii）From（ii），$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{40000}{(200-x)^{2}}$

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} t} \leq 3 \\
& \frac{40000}{(200-x)^{2}} \leq 3 \\
& 200-x \geq \frac{200}{\sqrt{3}} \\
& x \leq 200\left(1-\frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

When $x>200\left(1-\frac{1}{\sqrt{3}}\right), \frac{\mathrm{d} y}{\mathrm{~d} t}>3$ ．
So it is impossible to keep $\angle A R B$ unchanged before boat $A$ reaches $Q$ ．

1．Answer ALL questions in Section A and any THREE questions in Section B．
2．All working must be clearly shown．
3．Unless otherwise specified，numerical answers must be exact．
4．The diagrams in the paper are not necessarily drawn to scale．

## FORMULAS FOR REFERENCE

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
& \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \\
& \cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} \\
& 2 \sin A \cos B=\sin (A+B)+\sin (A-B) \\
& 2 \cos A \cos B=\cos (A+B)+\cos (A-B) \\
& 2 \sin A \sin B=\cos (A-B)-\cos (A+B)
\end{aligned}
$$

Section A（42 marks）
Answer ALL questions in this section．

1．Find $\int \sqrt{2 x+1} \mathrm{~d} x$ ．
（4 marks）

2．Expand $(1+2 x)^{7}(2-x)^{2}$ in ascending powers of $x$ up to the term $x^{2}$ ．
（5 marks）
3.


Figure 1
Figure 1 shows the ellipse $E: \frac{x^{2}}{16}+\frac{y^{2}}{9}=1 . \quad P(-4,0) \quad$ and $Q(4 \cos \theta, 3 \sin \theta)$ are points on $E$ ，where $0<\theta<\frac{\pi}{2} . R$ is a point such that the mid－point of $Q R$ is the origin $O$ ．
（a）Write down the coordinates of $R$ in terms of $\theta$ ．
（b）If the area of $\triangle P Q R$ is 6 square units，find the coordinates of $Q$ ．
（6 marks）

4．Prove，by mathematical induction，that

$$
1^{2}-2^{2}+3^{2}-4^{2}+\cdots+(-1)^{n-1} n^{2}=(-1)^{n-1} \frac{n(n+1)}{2}
$$

for all positive integers $n$ ．
5.


Figure 2
In Figure 2，the coordinates of points $A$ and $B$ are $(1,2)$ and $(2,0)$ respectively．Point $P$ divides $A B$ internally in the ratio $1: r$ ．
（a）Find the coordinates of $P$ in terms of $r$ ．
（b）Show that the slope of $O P$ is $\frac{2 r}{2+r}$ ．
（c）If $\angle A O P=45^{\circ}$ ，find the value of $r$ ．
（6 marks）
6.


Figure 3
The slope at any point $(x, y)$ of a curve $C$ is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+3$ ．The line $y=-x+1$ is a tangent to the curve at point $A$ ．（See Figure 3．）Find
（a）the coordinates of $A$ ，
（b）the equation of $C$ ．

7．（a）By expressing $\cos x-\sqrt{3} \sin x$ in the form $r \cos (x+\theta)$ ，or otherwise，find the general solution of the equation

$$
\cos x-\sqrt{3} \sin x=2
$$

（b）Find the number of points of intersection of the curves $y=\cos x$ and $y=2+\sqrt{3} \sin x$ for $0<x<9 \pi$ ．
（8 marks）

Section B（48 marks）
Answer any THREE questions in this section．
Each question carries 16 marks．
8.
（a）Find $\int \cos 3 x \cos x d x$ ．
（3 marks）
（b）Show that $\frac{\sin 5 x-\sin x}{\sin x}=4 \cos 3 x \cos x$ ．
Hence，or otherwise，find $\int \frac{\sin 5 x}{\sin x} \mathrm{~d} x$ ．
（4 marks）
（c）Using a suitable substitution，show that

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\sin 5 x}{\sin x} \mathrm{~d} x=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos 5 x}{\cos x} \mathrm{~d} x
$$

（4 marks）
（d）


Figure 4
In Figure 4，the curves $C_{1}: y=\frac{\cos 5 x}{\cos x}$ and $C_{2}: y=\frac{\sin 5 x}{\sin x}$ intersect at the point $\left(\frac{\pi}{4},-1\right)$ ．Find the area of the shaded region bounded by $C_{1}, C_{2}$ and the line $x=\frac{\pi}{3}$ ．

9．Given a family of circles

$$
F: x^{2}+y^{2}+(4 k+4) x+(3 k+1) y-(8 k+8)=0
$$

where $k$ is real．$C_{1}$ is the circle $x^{2}+y^{2}-2 y=0$.
（a）Show that
（i）$\quad C_{1}$ is a circle in $F$ ，
（ii）$\quad C_{1}$ touches the $x$－axis．
（4 marks）
（b）Besides $C_{1}$ ，there is another circle $C_{2}$ in $F$ which also touches the $x$－axis．
（i）Find the equation of $C_{2}$ ．
（ii）Show that $C_{1}$ and $C_{2}$ touch externally．
（7 marks）
（c）


Figure 5
Figure 5 shows the circles $C_{1}$ and $C_{2}$ in（b）．$L$ is a common tangent to $C_{1}$ and $C_{2} . C_{3}$ is a circle touching $C_{2}, L$ and the $x$－axis but it is not in $F$ ．（See Figure 5．）Find the equation of $C_{3}$ ．
（Hint ：The centres of the three circles are collinear．）
（5 marks）
10.


Figure 6（a）shows a parabola $P: y^{2}=4 x . A\left(t_{1}^{2}, 2 t_{1}\right)$ and $C\left(t_{2}^{2}, 2 t_{2}\right)$ are two distinct points on $P$ ，where $t_{1}<0<t_{2} . L_{1}$ and $L_{2}$ are tangents to $P$ at $A$ and $C$ respectively and they intersect at point $B$ ．Let $M$ be the mid－ point of $A C$ ．
（a）Show that
（i）the equation of $L_{1}$ is $x-t_{1} y+t_{1}^{2}=0$ ，
（ii）the coordinates of $B$ are $\left(t_{1} t_{2}, t_{1}+t_{2}\right)$ ，
（iii）$\quad B M$ is parallel to the $x$－axis．
（b）


Suppose $L_{1}$ and $L_{2}$ are perpendicular to each other and $D$ is a point such that $A B C D$ is a rectangle．（See Figure 6（b）．）
（i）Find the value of $t_{1} t_{2}$ ．
（ii）Show that the coordinates of $D$ are $\left(t_{1}^{2}+t_{2}^{2}+1, t_{1}+t_{2}\right)$ ．
（iii）Find the equation of the locus of $D$ as $A$ and $C$ move along the parabola $P$ ．
（9 marks）

11．（a）


Figure 7（a）
In Figure $7(\mathrm{a})$ ，the shaded region is bounded by the circle $x^{2}+y^{2}=r^{2}$ ，the $x$－axis，the $y$－axis and the line $y=-h$ ，where $h>0$ ．If the shaded region is revolved about the $y$－axis，show that the volume of the solid generated is $\left(r^{2} h-\frac{1}{3} h^{3}\right) \pi$ cubic units．
（4 marks）
（b）


Figure 7（b）

In Figure $7(\mathrm{~b}), \quad A$ and $C$ are points on the $x$－axis and $y$－axis respectively，$A B$ is an arc of the circle $3 x^{2}+3 y^{2}=89$ and $B C$ is a segment of the line $y=-1$ ．A mould is formed by revolving $A B$ and $B C$ about the $y$－axis．Using（a），or otherwise，show that the capacity of the mould is $\frac{88 \pi}{3}$ cubic units．
（c）
gold


Figure 7（c）



Figure 7（d）

A hemispherical pot of inner radius 4 units is completely filled with molten gold．（See Figure 7 （c）．）The molten gold is then poured into the mould mentioned in（b）by steadily tilting the pot．Suppose the pot is tilted through an angle $\theta$ and $G$ is the centre of the rim of the pot．（See Figure 7 （d）．）
（i）Find，in terms of $\theta$ ，
（1）the distance between $G$ and the surface of the molten gold remaining in the pot，
（2）the volume of gold poured into the mould．
（ii）When the mould is completely filled with molten gold， show that

$$
8 \sin ^{3} \theta-24 \sin \theta+11=0
$$

Hence find the value of $\theta$ ．
12.
（a）


Figure 8（a）

In Figure 8 （a），a triangle $A B C$ is inscribed in a circle with centre $O$ and radius $r . A B=c, B C=a$ and $C A=b$ ．Let $\angle B C A=\theta$ ．
（i）Express $\cos \theta$ in terms of $a, b$ and $c$ ．
（ii）Show that $r=\frac{c}{2 \sin \theta}$ ．
（iii）Using（i）and（ii），or otherwise，show that

$$
r=\frac{a b c}{\sqrt{4 a^{2} b^{2}-\left(a^{2}+b^{2}-c^{2}\right)^{2}}} .
$$

（b）In this part，numerical answers should be given correct to two significant figures．


12．（b）（continued）


Figure 8（c）

Figure 8 （b）shows a pedestrian walkway joining the horizontal ground and the first floor of a building．To estimate its length，the walkway is modelled by a circular arc $A^{\prime} B^{\prime} C^{\prime}$ as shown in Figure 8 （c），where $A^{\prime}$ denotes the entrance to the walkway on the ground and $C^{\prime}$ the exit leading to the first floor of the building．$P$ and $Q$ are the feet of perpendiculars from $B^{\prime}$ and $C^{\prime}$ to the ground respectively．It is given that $A^{\prime} P=35 \mathrm{~m}, P Q=21 \mathrm{~m}, B^{\prime} P=5 \mathrm{~m}$ ， $C^{\prime} Q=8 \mathrm{~m}$ and $\angle A^{\prime} P Q=120^{\circ}$ ．
（i）Find the radius of the circular arc $A^{\prime} B^{\prime} C^{\prime}$ ．
（ii）Estimate the length of the walkway．

## END OF PAPER

## Additional Mathematics

Paper 2

## Section A

1．$\frac{1}{3}(2 x+1)^{\frac{3}{2}}+c$ ，where $c$ is a constant
2． $4+52 x+281 x^{2}+\cdots$
3．（a）$(-4 \cos \theta,-3 \sin \theta)$
（b）$\left(2 \sqrt{3}, \frac{3}{2}\right)$
5．（a）$\left(\frac{2+r}{1+r}, \frac{2 r}{1+r}\right)$
（c）$\frac{2}{5}$

6．（a）$(-2,3)$
（b）$y=x^{2}+3 x+5$

7．（a）$x=2 n \pi-\frac{\pi}{3}$ ，where $n$ is an integer
（b） 4

5A．C保留版權 All Rights Reserved 2000

## Section B

Q. 8
(a) $\quad \int \cos 3 x \cos x \mathrm{~d} x=\int \frac{1}{2}(\cos 4 x+\cos 2 x) d x$

$$
=\frac{1}{8} \sin 4 x+\frac{1}{4} \sin 2 x+c, \text { where } c \text { is a constant }
$$

(b) $\frac{\sin 5 x-\sin x}{\sin x}=\frac{2 \sin 2 x \cos 3 x}{\sin x}$

$$
\begin{aligned}
& =\frac{2(2 \sin x \cos x) \cos 3 x}{\sin x} \\
& =4 \cos x \cos 3 x \\
\int \frac{\sin 5 x}{\sin x} \mathrm{~d} x & =\int(1+4 \cos 3 x \cos x) \mathrm{d} x \\
= & x+4\left(\frac{\sin 4 x}{8}+\frac{\sin 2 x}{4}\right)+c, \text { where } c \text { is a constant } \\
= & x+\frac{1}{2} \sin 4 x+\sin 2 x+c
\end{aligned}
$$

(c) Put $x=\frac{\pi}{2}-\theta$ :

$$
\begin{aligned}
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\sin 5 x}{\sin x} \mathrm{~d} x & =\int_{\frac{\pi}{3}}^{\frac{\pi}{4}} \frac{\sin 5\left(\frac{\pi}{2}-\theta\right)}{\sin \left(\frac{\pi}{2}-\theta\right)}(-\mathrm{d} \theta) \\
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos 5 \theta}{\cos \theta} \mathrm{~d} \theta \\
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos 5 x}{\cos x} \mathrm{~d} x
\end{aligned}
$$

(d) Area of shaded region

$$
\begin{aligned}
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\left(\frac{\cos 5 x}{\cos x}-\frac{\sin 5 x}{\sin x}\right) \mathrm{d} x \\
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos 5 x}{\cos x} \mathrm{~d} x-\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 5 x}{\sin x} \mathrm{~d} x \\
& =\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\sin 5 x}{\sin x} \mathrm{~d} x-\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 5 x}{\sin x} \mathrm{~d} x \quad \text { (using (c)) } \\
& =\left[x+\frac{1}{2} \sin 4 x+\sin 2 x\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}-\left[x+\frac{1}{2} \sin 4 x+\sin 2 x\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} \\
& =2-\sqrt{3}
\end{aligned}
$$

Q． 9 （a）（i）Put $k=-1$ into $F$ ，the equation becomes
$x^{2}+y^{2}+(-4+4) x+(-3+1) y-(-8+8)=0$
i．e．$x^{2}+y^{2}-2 y=0$ ．
$\therefore C_{1}$ is a circle in $F$ ．
（ii）Co－ordinates of centre of $C_{1}=(0,1)$ ．
radius of $C_{1}=1$
Since the $y$－coordinate of centre is equal to the radius，$C_{1}$ touches the $x$－axis．
（b）（i）Put $y=0$ in $F$ ：
$x^{2}+(4 k+4) x-(8 k+8)=0$
Since the circle touches the $x$－axis，
$(4 k+4)^{2}+4(8 k+8)=0$
$16 k^{2}+64 k+48=0$
$16(k+1)(k+3)=0$
$k=-1$（rejected）or $k=-3$ ，
$\therefore$ the equation of $C_{2}$ is

$$
\begin{aligned}
& x^{2}+y^{2}+[4(-3)+4] x+[3(-3)+1] y-[(-3) \times 8+8]=0 \\
& x^{2}+y^{2}-8 x-8 y+16=0
\end{aligned}
$$

（ii）Co－ordinates of centre of $C_{1}=(0,1)$ ，radius $=1$ ．
Co－ordinates of centre of $C_{2}=(4,4)$ ，radius $=4$ ．
Distance between centres $=\sqrt{(4-0)^{2}+(4-1)^{2}}$

$$
\begin{aligned}
& =5 \\
& =\text { sum of radii of } C_{1} \text { and } C_{2}
\end{aligned}
$$

$\therefore C_{1}$ and $C_{2}$ touch externally．
（c）Let radius of $C_{3}$ be $r$ and coordinates of its centre be （ $a, r$ ）．
$(0,1)$


Considering the similar triangles，

$$
\begin{aligned}
& \frac{r+4}{1+4}=\frac{r-4}{4-1} \\
& 3 r+12=5 r-20 \\
& r=16 \\
& \frac{a-4}{4-0}=\frac{r+4}{4+1} \\
&=\frac{16+4}{4+1} \\
& a=20
\end{aligned}
$$

$\therefore$ the equation of $C_{3}$ is $(x-20)^{2}+(y-16)^{2}=256$ ．

Q． 10 （a）（i）$y^{2}=4 x$
$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{y}$
At point $A, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{2 t_{1}}=\frac{1}{t_{1}}$
Equation of $L_{1}$ is
$\frac{y-2 t_{1}}{x-t_{1}{ }^{2}}=\frac{1}{t_{1}}$
$t_{1} y-2 t_{1}{ }^{2}=x-t_{1}{ }^{2}$
$x-t_{1} y+t_{1}^{2}=0$
（ii）Equation of $L_{2}$ is $x-t_{2} y+t_{2}^{2}=0$ ．
$\begin{cases}x-t_{1} y+t_{1}{ }^{2}=0 & -----(1) \\ x-t_{2} y+t_{2}{ }^{2}=0 & -----(2)\end{cases}$
（1）$-(2):\left(t_{2}-t_{1}\right) y+\left(t_{1}{ }^{2}-t_{2}{ }^{2}\right)=0$
$y=t_{1}+t_{2}$
$x=t_{1}\left(t_{1}+t_{2}\right)-t_{1}{ }^{2}=t_{1} t_{2}$
$\therefore$ the coordinates of $B$ are $\left(t_{1} t_{2}, t_{1}+t_{2}\right)$ ．
（iii）The coordinates of $M$ are $\left(\frac{t_{1}{ }^{2}+t_{2}{ }^{2}}{2}, \frac{2 t_{1}+2 t_{2}}{2}\right)$ ，

$$
\text { i.e. }\left(\frac{t_{1}^{2}+t_{2}^{2}}{2}, t_{1}+t_{2}\right) \text {. }
$$

As the $y$－coordinates of $B$ and $M$ are equal， $B M$ is parallel to the $x$－axis．
（b）（i）$\left(\right.$ Slope of $\left.L_{1}\right)\left(\right.$ Slope of $\left.L_{2}\right)=-1$
$\left(\frac{1}{t_{1}}\right)\left(\frac{1}{t_{2}}\right)=-1$
$t_{1} t_{2}=-1$
（ii）Since $A B C D$ is a rectangle，mid－point of $B D$ coincides with mid－point of $A C$ ，i．e．point $M$ ．

$$
\begin{aligned}
& \frac{x+t_{1} t_{2}}{2}=\frac{t_{1}^{2}+t_{2}^{2}}{2} \\
& x=t_{1}^{2}+t_{2}^{2}-t_{1} t_{2} \\
& \quad=t_{1}^{2}+t_{2}^{2}+1 \quad\left(\because t_{1} t_{2}=-1\right)
\end{aligned}
$$

Since $B D$ is parallel to the $x$－axis，the $y$－coordinate of $D=y$－coordinate of $B=t_{1}+t_{2}$ ．
$\therefore$ the coordinates of $D$ are $\left(t_{1}{ }^{2}+t_{2}{ }^{2}+1, t_{1}+t_{2}\right)$ ．
（iii）Let $(x, y)$ be the coordinates of $D$ ．

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=t_{1}^{2}+t_{2}^{2}+1 \\
y=t_{1}+t_{2}
\end{array}\right. \\
& x=\left(t_{1}+t_{2}\right)^{2}-2 t_{1} t_{2}+1 \\
& =y^{2}-2(-1)+1 \\
& x=y^{2}+3
\end{aligned}
$$

$\therefore$ the equation of the locus is $x-y^{2}-3=0$ ．

Q． 11 （a）Volume $=\int_{-h}^{0} \pi x^{2} \mathrm{~d} y$

$$
\begin{aligned}
& =\int_{-h}^{0} \pi\left(r^{2}-y^{2}\right) \mathrm{d} y \\
& =\pi\left[r^{2} y-\frac{1}{3} y^{3}\right]_{-h}^{0} \\
& =\pi\left(r^{2} h-\frac{1}{3} h^{3}\right) \text { cubic units }
\end{aligned}
$$

（b）Put $h=1, r=\sqrt{\frac{89}{3}}$ ：
Using（a），
capacity of the mould $=\pi\left[\frac{89}{3}(1)-\frac{1}{3}(1)^{3}\right]$

$$
=\frac{88 \pi}{3} \text { cubic units }
$$

（c）（i）（1）Distance $=4 \sin \theta$ ．
（2）Put $r=4, h=4 \sin \theta$ ．
Using（a），amount of gold poured into the pot

$$
\begin{aligned}
& =\pi\left[4^{2}(4 \sin \theta)-\frac{1}{3}(4 \sin \theta)^{3}\right] \\
& =\pi\left(64 \sin \theta-\frac{64}{3} \sin ^{3} \theta\right)
\end{aligned}
$$

（ii）When the mould is completely filled，
$\pi\left(64 \sin \theta-\frac{64}{3} \sin ^{3} \theta\right)=\frac{88 \pi}{3}$
$64 \sin ^{3} \theta-192 \sin \theta+88=0$
$8 \sin ^{3} \theta-24 \sin \theta+11=0---\left({ }^{*}\right)$
Put $\sin \theta=\frac{1}{2}$ ：
$8 \sin ^{3} \theta-24 \sin \theta+11=0$ ．
$\therefore \sin \theta=\frac{1}{2}$ is a root of $\left({ }^{*}\right)$
$(2 \sin \theta-1)\left(4 \sin ^{2} \theta+2 \sin \theta-11\right)=0$
$\sin \theta=\frac{1}{2}$ or $\sin \theta=\frac{-2 \pm \sqrt{180}}{8}$（rejected）
$\therefore \sin \theta=\frac{1}{2}$
$\theta=\frac{\pi}{6}$
（C）保留版權 All Rights Reserved 2000

Q． 12 （a）

（i） $\cos \theta=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
（ii）Consider $\triangle A B D$ ：

$$
\begin{aligned}
& A D=2 r \\
& \angle B D A=\angle B C A=\theta \\
& \angle A B D=90^{\circ} \\
& \therefore \sin \theta=\frac{c}{2 r} \\
& \quad r=\frac{c}{2 \sin \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iii) } \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \left(\frac{c}{2 r}\right)^{2}+\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)^{2}=1 \\
& \frac{c^{2}}{4 r^{2}}=1-\frac{\left(a^{2}+b^{2}-c^{2}\right)^{2}}{4 a^{2} b^{2}} \\
& r^{2}=\frac{a^{2} b^{2} c^{2}}{4 a^{2} b^{2}-\left(a^{2}+b^{2}-c^{2}\right)^{2}} \\
& r=\frac{a b c}{\sqrt{4 a^{2} b^{2}-\left(a^{2}+b^{2}-c^{2}\right)^{2}}}
\end{aligned}
$$

（b）（i）Consider $\Delta A^{\prime} B^{\prime} C^{\prime}: A^{\prime} B^{\prime}=\sqrt{\left(A^{\prime} P\right)^{2}+\left(P B^{\prime}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{35^{2}+5^{2}} \\
& =\sqrt{1250} \\
B^{\prime} C^{\prime} & =\sqrt{(P Q)^{2}+\left(Q C^{\prime}-P B^{\prime}\right)^{2}} \\
& =\sqrt{21^{2}+(8-5)^{2}} \\
& =\sqrt{450}
\end{aligned}
$$

$$
\begin{aligned}
\left(A^{\prime} Q\right)^{2} & =\left(A^{\prime} P\right)^{2}+(P Q)^{2}-2\left(A^{\prime} P\right)(P Q)^{2} \cos \angle A^{\prime} P Q \\
& =35^{2}+21^{2}-2(35)(21) \cos 120^{\circ} \\
& =2401 \\
A^{\prime} C^{\prime}= & \sqrt{\left(A^{\prime} Q\right)^{2}+\left(Q C^{\prime}\right)^{2}} \\
= & \sqrt{2401+8^{2}} \\
= & \sqrt{2465}
\end{aligned}
$$

Using（a）（iii），put $a=\sqrt{450}, b=\sqrt{2465}, c=\sqrt{1250}$ ：
$r=\frac{\sqrt{1250} \sqrt{450} \sqrt{2465}}{\sqrt{4(450)(2465)-(450+2465-1250)^{2}}}$
$=29 \mathrm{~m}$（correct to 2 sig．figures）
$\therefore$ the radius of arc $A^{\prime} B^{\prime} C^{\prime}$ is 29 m ．
（ii）


Let $O^{\prime}$ be the centre of the circle passing through $A^{\prime}, B^{\prime}$ and $C^{\prime}$ ， $\phi$ be the angle subtended by arc $A^{\prime} B^{\prime} C^{\prime}$ at $O^{\prime}$ ．
Consider $\Delta O^{\prime} A^{\prime} N\left(N\right.$ is the mid－point of $\left.A^{\prime} C^{\prime}\right)$

$$
\begin{aligned}
& \sin \frac{\phi}{2}=\frac{\frac{1}{2} A^{\prime} C^{\prime}}{r} \\
& \sin \frac{\phi}{2}=\frac{\frac{1}{2} \sqrt{2465}}{28.86} \\
&=0.8602 \\
& \phi=2.07
\end{aligned}
$$

Length of walkway

$$
\begin{aligned}
=\text { length of } \begin{aligned}
\widetilde{A^{\prime} B^{\prime} C^{\prime}} & =r \phi \\
& =28.86(2.07) \\
& =60 \mathrm{~m}(\text { correct to } 2 \text { sig. figures })
\end{aligned}
\end{aligned}
$$

$\therefore$ the length of the walkway is 60 m ．

