HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1986

ADDITIONAL MATHEMATICS PAPER I

SECTION A (39 marks)
Answer All questions in this section.

1. Find, from first principles, $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{3}\right)$.
2. The quadratic equation

$$
x^{2} \log a+(x+1) \log b=0
$$

where a and b are constants, has non-zero equal roots.
Find b in terms of a.
(5 marks)
3. The maximum value of the function $f(x)=4 k+18 x-k x^{2}$ (k is a positive constant) is 45 . Find k. (5 marks)
4. Find the equation of the tangent to the curve $x^{2}+x y+y^{2}=7$ at the point $(2,1)$.
(6 marks)
5. The angle between the two vectors $\mathbf{i}+\mathbf{j}$ and $(c+4) \mathbf{i}+(c-4) \mathbf{j}$ is θ, where $\cos \theta=-\frac{3}{5}$. Find the value of the constant c.
6. On the same Argand diagram, sketch the locus of the point representing the complex number z in each of the following cases:
(a) $|z-2|=1$;
(b) $|z-1|=|z-3|$.

Hence, or otherwise, find the complex numbers represented by the points of intersection of the two loci.
(6 marks)
7. Solve $x>\frac{3}{x}+2$ for each of the following cases:
(a) $x>0$;
(b) $x<0$.

SECTION B (60 marks)
Answer any THREE questions from this section. Each question carries 20 marks.
8. In Figure $1, O A C B$ is a trapezium with $O B \| A C$ and $A C=2 O B . P$ and Q are points on $O A$ and $B C$ respectively such that $O P=\frac{1}{2} O A$ and $B Q=\frac{1}{3} B C$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.

Figure 1
(a) Express $\overrightarrow{O C}, \overrightarrow{B C}$ and $\overrightarrow{O Q}$ in terms of \mathbf{a} and \mathbf{b}.
(5 marks)
(b) $O C$ intersects $P Q$ at the point R.

Let $P R: R Q=h: 1-h$.
(i) Express $\overrightarrow{O R}$ in terms of \mathbf{a}, \mathbf{b} and h.
(ii) If $\overrightarrow{O R}=k \overrightarrow{O C}$, find h and k.
(9 marks)
(c) $O B$ and $P Q$ are produced to meet at T and $\overrightarrow{O T}=\lambda \mathbf{b}$.
(i) Express $\overrightarrow{P Q}$ in terms of \mathbf{a} and \mathbf{b}. Express $\overrightarrow{P T}$ in terms of \mathbf{a}, \mathbf{b} and λ.
(ii) Hence, or otherwise, find the value of λ.
9. (a) Write down the general solution of the equation $\cos x=\frac{1}{\sqrt{2}}$.
(3 marks)
(b) Let m be a positive integer.
(i) If $z=r(\cos \theta+i \sin \theta)$, show that $z^{m}+\bar{z}^{m}=2 r^{m} \cos m \theta$.
(ii) By making use of (a) and (b)(i), or otherwise, find the values of m for which

$$
\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)^{m}+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)^{m}=\sqrt{2}
$$

(9 marks)
(c) (i) Let p be a positive integer. Find the values of p for which

$$
(1+i)^{p}-(1-i)^{p}=0
$$

(ii) By making use of (c)(i), or otherwise, find the value of

$$
\frac{(1+i)^{4 k+1}}{(1-i)^{4 k-1}}
$$

where k is a positive integer.
(8 marks)
10. The graph of the function $f(x)=x^{3}+h x^{2}+k x+2$ (h and k are constants) has 2 distinct turning points and intersects the line $y=2$ at the point $(0,2)$ only.
(a) Show that $3 k<h^{2}<4 k$.
(8 marks)
(b) It is also known that the graph of $f(x)$ passes through $(-2,0)$.
(i) Express k in terms of h.
(ii) If h is an integer, use the results in (a) and (b)(i) to show that $h=4$ or 5 .
(iii) For $h=4$, find the maximum and minimum points of the graph of $f(x)$ and sketch this graph.
(12 marks)
11. Figure 2 shows two rods $O P$ and $P R$ in the $x y$-plane. The rods, each 10 cm long, are hinged at P. The end O is fixed while the end R can move along the positive x-axis. $O L=20 \mathrm{~cm}, O R=s \mathrm{~cm}$ and $\angle P O R=\theta$, where $0 \leq \theta \leq \frac{\pi}{2}$.

Figure 2
(a) Express s in terms of θ.

If R moves from the point O to the point L at a speed of $10 \mathrm{~cm} / \mathrm{s}$, find the rate of change of θ with respect to time when $s=10$.
(5 marks)
(b) Find the equation of the locus of the mid-point of $P R$ and sketch this locus.
(c) A square of side $\ell \mathrm{cm}$ is inscribed in $\triangle O P R$ such that one side of the square lies on $O R$. Show that

$$
\ell=\frac{20 \sin \theta \cos \theta}{\sin \theta+2 \cos \theta}
$$

Hence find θ when the area of the square is a maximum.
12. Figure 3 shows a rectangular picture of area $A \mathrm{~cm}^{2}$ mounted on a rectangular piece of cardboard of area $3600 \mathrm{~cm}^{2}$ with sides of length $x \mathrm{~cm}$ and $y \mathrm{~cm}$. The top, bottom and side margins are 12 cm , 13 cm and 8 cm wide respectively.

Figure 3
(a) Find A in terms of x.
(b) Show that the largest value of A is 1600 .
(c) (i) Find the range of values of x for which A decreases as x increases.
(ii) If $x \geq 50$, find the largest value of A.
(6 marks)
(d) If $\frac{4}{9} \leq \frac{x}{y} \leq \frac{9}{16}$, find the range of values of x and the largest value of A.

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1986

ADDITIONAL MATHEMATICS PAPER II
Time allowed: Two Hours
SECTION A (39 marks)
Answer All questions in this section.

1. Prove, by mathematical induction, that for any positive integer n,

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

(5 marks)
2. In the expansion of $\left(x^{2}+2\right)^{n}$ in descending powers of x, where n is a positive integer, the coefficient of the third term is 40 . Find the value of n and the coefficient of x^{4}.
3. If θ is an obtuse angle and the equation in x

$$
3 x^{2}-(4 \cos \theta) x+2 \sin \theta=0
$$

has equal roots, find the value of θ.
(5 marks)
4. Using the identity $\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$, find the general solution of $\sin 2 \theta+\sin 4 \theta=$ $\cos \theta$.
(6 marks)
5. $A(3,6), B(-1,-2)$ and $C(5,-3)$ are three points. $P(s, t)$ is a point on the line $A B$.
(a) Find t in terms of s.
(b) If the area of $\triangle A P C$ is $\frac{13}{2}$, find the two values of s.
(6 marks)
6. A straight line through $C(3,2)$ with slope m cuts the curve $y=(x-2)^{2}$ at the points A and B. If C is the mid-point of $A B$, find the value of m.
(6 marks)
7. Let $y=\frac{\tan ^{3} \theta}{3}-\tan \theta$.

Find $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ in terms of $\tan \theta$.
Hence, or otherwise, find $\int \tan ^{4} \theta \mathrm{~d} \theta$.

SECTION B (60 marks)
Answer any THREE questions from this section. Each question carries 20 marks.
8. (a) Show that $\int_{0}^{a} f(x) \mathrm{d} x=\int_{0}^{a} f(a-x) \mathrm{d} x$.
(b) Using the result in (a), or otherwise, evaluate the following integrals:
(i) $\int_{0}^{\pi} \cos ^{2 n+1} x \mathrm{~d} x$, where n is a positive integer,
(ii) $\int_{0}^{\pi} x \sin ^{2} x \mathrm{~d} x$,
(iii) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \mathrm{~d} x}{\sin x+\cos x}$.
(16 marks)
9. A family of straight lines is given by the equation

$$
(3 k+2) x-(2 k-1) y+(k-11)=0
$$

where k is any constant.
(a) L_{1} is the line $x-2 y+4=0$.
(i) There are two lines in the family each making an angle of 45° with L_{1}. Find the equations of these lines.
(ii) Find the equation of the line L in the family which is parallel to L_{1}. The line L_{1} and another line L_{2} are equidistant from L. Find the equation of L_{2}.
(11 marks)
(b) For what value of k does the line in the family form a triangle of minimum area with the two positive coordinate axes?

> (7 marks)
(c) The straight lines in the family pass through a fixed point Q. Write down the equation of the line which passes through Q but which does not belong to the family.
(2 marks)
10. The circles $C_{1}: x^{2}+y^{2}-4 x+2 y+1=0$ and $C_{2}: x^{2}+y^{2}-10 x-4 y+19=0$ have a common chord $A B$.
(a) (i) Find the equation of the line $A B$.
(ii) Find the equation of the circle with $A B$ as a chord such that the area of the circle is a minimum.
(9 marks)
(b) The circle C_{1} and another circle C_{3} are concentric. If $A B$ is a tangent to C_{3}, find the equation of C_{3}.
(4 marks)
(c) $P(x, y)$ is a variable point such that

$$
\frac{\text { distance from } P \text { to the center of } C_{1}}{\text { distance from } P \text { to the center of } C_{2}}=\frac{1}{k} \quad(k>0)
$$

Find the equation of the locus of P.
(i) When $k=2$, write down the equation of the locus of P and name the locus.
(ii) For what value of k is the locus of P a straight line?
(7 marks)
11. (a) (i) Using the substitution $x=2 \sin \theta$, evaluate

$$
\int_{1}^{2} \sqrt{4-x^{2}} \mathrm{~d} x
$$

(ii) Express $3+2 x-x^{2}$ in the form $a^{2}-(x-b)^{2}$ where a and b are constants. Using the substitution $x-b=a \sin \theta$, evaluate

$$
\int_{0}^{1} \sqrt{3+2 x-x^{2}} \mathrm{~d} x .
$$

(b) In Figure 1, the shaded region is bounded by the two circles $C_{1}: x^{2}+y^{2}=4, C_{2}:(x-1)^{2}+(y-$ $\sqrt{3})^{2}=4$ and the parabola $S: y^{2}=3 x$.

Figure 1
(i) $P(x, y)$ is a point on the minor $\operatorname{arc} O A$ of C_{2}. Express y in terms of x.
(ii) Find the area of the shaded region.
12. (a) (i) Express $\sin 108^{\circ}$ in terms of $\sin 36^{\circ}$.

Using this result and the relation $\sin 108^{\circ}=\sin 72^{\circ}$, show that $\cos 36^{\circ}=\frac{1+\sqrt{5}}{4}$.
(ii) Find $\cos 72^{\circ}$ in surd form.
(7 marks)
(b) In Figure 2, O is the center of the circle $A P B$ of radius 1 unit. $A K O N, A H B$ and $K H P$ are straight lines. $P K$ and $B N$ are both perpendicular to $A N . \angle A O H=60^{\circ}$. Let $\angle O A H=\phi$.

Figure 2
(i) By considering $\triangle A O H$, express $O H$ in terms of $\tan \phi$.

Hence show that $\cos \angle P O K=\frac{\tan \phi}{\sqrt{3}+\tan \phi}$.
(ii) It is given that $O N=\frac{1}{4}$.
(1) Find $B N$ and hence the value of $\tan \phi$. Give your answers in surd form.
(2) Find the value of $\cos \angle P O K$ in surd form. Hence find $\angle P O K$ without using calculators.

END OF PAPER

