HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1986

ADDITIONAL MATHEMATICS PAPER I

Time allowed: Two Hours

SECTION A (39 marks)

Answer All questions in this section.

1. Find, from first principles, $\frac{\mathrm{d}}{\mathrm{d}x}(x^3)$.

(4 marks)

2. The quadratic equation

$$x^2 \log a + (x+1) \log b = 0,$$

where a and b are constants, has non-zero equal roots. Find b in terms of a.

(5 marks)

- 3. The maximum value of the function $f(x) = 4k + 18x kx^2$ (k is a positive constant) is 45. Find k. (5 marks)
- 4. Find the equation of the tangent to the curve $x^2 + xy + y^2 = 7$ at the point (2,1).

(6 marks)

5. The angle between the two vectors $\mathbf{i} + \mathbf{j}$ and $(c+4)\mathbf{i} + (c-4)\mathbf{j}$ is θ , where $\cos \theta = -\frac{3}{5}$. Find the value of the constant c.

(6 marks)

- 6. On the same Argand diagram, sketch the locus of the point representing the complex number z in each of the following cases:
 - (a) |z-2|=1;
 - (b) |z-1| = |z-3|.

Hence, or otherwise, find the complex numbers represented by the points of intersection of the two loci.

(6 marks)

- 7. Solve $x > \frac{3}{x} + 2$ for each of the following cases:
 - (a) x > 0;
 - (b) x < 0.

(7 marks)

SECTION B (60 marks)

Answer any THREE questions from this section. Each question carries 20 marks.

8. In Figure 1, OACB is a trapezium with $OB \parallel AC$ and AC = 2OB. P and Q are points on OA and BC respectively such that $OP = \frac{1}{2}OA$ and $BQ = \frac{1}{3}BC$. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Express \overrightarrow{OC} , \overrightarrow{BC} and \overrightarrow{OQ} in terms of **a** and **b**.

(5 marks)

- (b) OC intersects PQ at the point R. Let PR : RQ = h : 1 - h.
 - (i) Express \overrightarrow{OR} in terms of \mathbf{a}, \mathbf{b} and h.

(ii) If $\overrightarrow{OR} = k\overrightarrow{OC}$, find h and k.

(9 marks)

- (c) OB and PQ are produced to meet at T and $\overrightarrow{OT} = \lambda \mathbf{b}$.
 - (i) Express \overrightarrow{PQ} in terms of **a** and **b**. Express \overrightarrow{PT} in terms of **a**, **b** and λ .
 - (ii) Hence, or otherwise, find the value of λ .

(6 marks)

9. (a) Write down the general solution of the equation $\cos x = \frac{1}{\sqrt{2}}$.

(3 marks)

- (b) Let m be a positive integer.
 - (i) If $z = r(\cos \theta + i \sin \theta)$, show that $z^m + \bar{z}^m = 2r^m \cos m\theta$.
 - (ii) By making use of (a) and (b)(i), or otherwise, find the values of m for which

$$\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^m + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)^m = \sqrt{2}.$$

(9 marks)

(c) (i) Let p be a positive integer. Find the values of p for which

$$(1+i)^p - (1-i)^p = 0.$$

(ii) By making use of (c)(i), or otherwise, find the value of

$$\frac{(1+i)^{4k+1}}{(1-i)^{4k-1}},$$

where k is a positive integer.

(8 marks)

- 10. The graph of the function $f(x) = x^3 + hx^2 + kx + 2$ (h and k are constants) has 2 distinct turning points and intersects the line y = 2 at the point (0,2) only.
 - (a) Show that $3k < h^2 < 4k$.

(8 marks)

- (b) It is also known that the graph of f(x) passes through (-2,0).
 - (i) Express k in terms of h.
 - (ii) If h is an integer, use the results in (a) and (b)(i) to show that h = 4 or 5.
 - (iii) For h = 4, find the maximum and minimum points of the graph of f(x) and sketch this graph.

(12 marks)

11. Figure 2 shows two rods OP and PR in the xy-plane. The rods, each 10 cm long, are hinged at P. The end O is fixed while the end R can move along the positive x-axis. OL = 20 cm, OR = s cm and $\angle POR = \theta$, where $0 \le \theta \le \frac{\pi}{2}$.

Figure 2

(a) Express s in terms of θ . If R moves from the point O to the point L at a speed of 10 cm/s, find the rate of change of θ with respect to time when s=10.

(5 marks)

(b) Find the equation of the locus of the mid-point of PR and sketch this locus.

(5 marks)

(c) A square of side ℓ cm is inscribed in $\triangle OPR$ such that one side of the square lies on OR. Show that

$$\ell = \frac{20\sin\theta\cos\theta}{\sin\theta + 2\cos\theta}.$$

Hence find θ when the area of the square is a maximum.

(10 marks)

12. Figure 3 shows a rectangular picture of area $A~{\rm cm}^2$ mounted on a rectangular piece of cardboard of area 3600 cm² with sides of length $x~{\rm cm}$ and $y~{\rm cm}$. The top, bottom and side margins are 12 cm, 13 cm and 8 cm wide respectively.

Figure 3

(a) Find A in terms of x.

(2 marks)

(b) Show that the largest value of A is 1600.

(5 marks)

- (c) (i) Find the range of values of x for which A decreases as x increases.
 - (ii) If $x \ge 50$, find the largest value of A.

(6 marks)

(d) If $\frac{4}{9} \le \frac{x}{y} \le \frac{9}{16}$, find the range of values of x and the largest value of A.

(7 marks)

END OF PAPER

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1986

ADDITIONAL MATHEMATICS PAPER II

Time allowed: Two Hours

SECTION A (39 marks)

Answer All questions in this section.

1. Prove, by mathematical induction, that for any positive integer n,

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

(5 marks)

2. In the expansion of $(x^2 + 2)^n$ in descending powers of x, where n is a positive integer, the coefficient of the third term is 40. Find the value of n and the coefficient of x^4 .

(5 marks)

3. If θ is an obtuse angle and the equation in x

$$3x^2 - (4\cos\theta)x + 2\sin\theta = 0$$

has equal roots, find the value of θ .

(5 marks)

4. Using the identity $\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$, find the general solution of $\sin 2\theta + \sin 4\theta = \cos \theta$.

(6 marks)

- 5. A(3,6), B(-1,-2) and C(5,-3) are three points. P(s,t) is a point on the line AB.
 - (a) Find t in terms of s.
 - (b) If the area of $\triangle APC$ is $\frac{13}{2}$, find the two values of s.

(6 marks)

6. A straight line through C(3,2) with slope m cuts the curve $y=(x-2)^2$ at the points A and B. If C is the mid-point of AB, find the value of m.

(6 marks)

7. Let $y = \frac{\tan^3 \theta}{3} - \tan \theta$.

Find $\frac{\mathrm{d}y}{\mathrm{d}\theta}$ in terms of $\tan \theta$.

Hence, or otherwise, find $\int \tan^4 \theta \, d\theta$.

(6 marks)

SECTION B (60 marks)

Answer any THREE questions from this section. Each question carries 20 marks.

8. (a) Show that $\int_0^a f(x) dx = \int_0^a f(a-x) dx.$

(4 marks)

(b) Using the result in (a), or otherwise, evaluate the following integrals:

(i)
$$\int_0^{\pi} \cos^{2n+1} x \, dx$$
, where *n* is a positive integer,

(ii)
$$\int_0^{\pi} x \sin^2 x \, \mathrm{d}x,$$

(iii)
$$\int_0^{\frac{\pi}{2}} \frac{\sin x \, \mathrm{d}x}{\sin x + \cos x}.$$

 $(16~{\rm marks})$

9. A family of straight lines is given by the equation

$$(3k+2)x - (2k-1)y + (k-11) = 0,$$

where k is any constant.

(a) L_1 is the line x - 2y + 4 = 0.

- (i) There are two lines in the family each making an angle of 45° with L_1 . Find the equations of these lines.
- (ii) Find the equation of the line L in the family which is parallel to L_1 . The line L_1 and another line L_2 are equidistant from L. Find the equation of L_2 .

(11 marks)

(b) For what value of k does the line in the family form a triangle of minimum area with the two positive coordinate axes?

(7 marks)

(c) The straight lines in the family pass through a fixed point Q. Write down the equation of the line which passes through Q but which does not belong to the family.

(2 marks)

- 10. The circles $C_1: x^2 + y^2 4x + 2y + 1 = 0$ and $C_2: x^2 + y^2 10x 4y + 19 = 0$ have a common chord AB.
 - (a) (i) Find the equation of the line AB.
 - (ii) Find the equation of the circle with AB as a chord such that the area of the circle is a minimum.

(9 marks)

(b) The circle C_1 and another circle C_3 are concentric. If AB is a tangent to C_3 , find the equation of C_3 .

(4 marks)

(c) P(x,y) is a variable point such that

$$\frac{\text{distance from } P \text{ to the center of } C_1}{\text{distance from } P \text{ to the center of } C_2} = \frac{1}{k} \qquad (k > 0).$$

Find the equation of the locus of P.

- (i) When k=2, write down the equation of the locus of P and name the locus.
- (ii) For what value of k is the locus of P a straight line?

(7 marks)

11. (a) (i) Using the substitution $x = 2\sin\theta$, evaluate

$$\int_{1}^{2} \sqrt{4-x^2} \, \mathrm{d}x.$$

(ii) Express $3 + 2x - x^2$ in the form $a^2 - (x - b)^2$ where a and b are constants. Using the substitution $x - b = a \sin \theta$, evaluate

$$\int_0^1 \sqrt{3 + 2x - x^2} \, \mathrm{d}x.$$

(11 marks)

(b) In Figure 1, the shaded region is bounded by the two circles $C_1: x^2 + y^2 = 4$, $C_2: (x-1)^2 + (y-\sqrt{3})^2 = 4$ and the parabola $S: y^2 = 3x$.

Figure 1

- (i) P(x,y) is a point on the minor arc OA of C_2 . Express y in terms of x.
- (ii) Find the area of the shaded region.

(9 marks)

12. (a) (i) Express $\sin 108^{\circ}$ in terms of $\sin 36^{\circ}$.

Using this result and the relation $\sin 108^\circ = \sin 72^\circ$, show that $\cos 36^\circ = \frac{1+\sqrt{5}}{4}$.

(ii) Find $\cos 72^{\circ}$ in surd form.

(7 marks)

(b) In Figure 2, O is the center of the circle APB of radius 1 unit. AKON, AHB and KHP are straight lines. PK and BN are both perpendicular to AN. $\angle AOH = 60^{\circ}$. Let $\angle OAH = \phi$.

Figure 2

- (i) By considering $\triangle AOH$, express OH in terms of $\tan \phi$. Hence show that $\cos \angle POK = \frac{\tan \varphi}{\sqrt{3} + \tan \phi}$
- (ii) It is given that $ON = \frac{1}{4}$.
 - (1) Find BN and hence the value of $\tan \phi$. Give your answers in surd form.
 - (2) Find the value of $\cos \angle POK$ in surd form. Hence find $\angle POK$ without using calculators.

(13 marks)

END OF PAPER