Ratio of area of triangles

1. Similar Triangles

If two similar triangles are given, their ratio of area is given by $\frac{A_{1}}{A_{2}}=\left(\frac{\ell_{1}}{\ell_{2}}\right)^{2}$, where ℓ_{1} is the corresponding sides of ℓ_{2}.

Example 1

It is given that $A B / / D E$ and C is the intersection point of two straight lines $A C D$ and $B C E$,
(a) Prove that $\triangle A B C \sim \triangle D E C$
(b) If $A C=9 \mathrm{~cm}, C D=3 \mathrm{~cm}$ and the area of $\triangle A B C$ is $27 \mathrm{~cm}^{2}$, find the area of $\triangle D E C$

Solution

(a) $\angle A C B=\angle D C E$ (vert. opp. \angle s eq.)
$\angle A B C=\angle C E D \quad$ (alt. $\angle \mathrm{s}, A B / / D E)$
$\angle B A C=\angle E D C$ (alt. $\angle \mathrm{s}, A B / / D E)$
$\therefore \triangle A B C \sim \triangle D E C$ (A.A.A.)
(b) As $\triangle A B C \sim \triangle D E C$ (proved),

$$
\begin{aligned}
\frac{A}{27} & =\left(\frac{3}{9}\right)^{2} \\
A & =3 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 2

It is given that D and E are two points lie on two straight lines $A C D$ and $B C E$ such that
$B C / / D E$. If $A E: A C=1: 3$ and the area of the trapezium $B C E D$ is $64 \mathrm{~cm}^{2}$, find the area of $\triangle A D E$

Solution
As $\triangle A D E \sim \triangle A B C$ (A.A.A.)
So area of $\triangle A D E:$ area of $\triangle A B C=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$

Area of $\triangle A D E$: area of the trapezium $B C E D$
$=$ area of $\triangle A D E:$ area of $\triangle A B C-$ area of $\triangle A D E=1:(9-1)=1: 8$

Thus, the area of required $=\frac{64}{8}=8 \mathrm{~cm}^{2}$

2. Triangles with same base/height

Consider the ratio of area of two triangles.

$$
\begin{aligned}
& A_{1}: A_{2} \\
& =\frac{1}{2} b_{1} h_{1}: \frac{1}{2} b_{2} h_{2} \\
& =b_{1} h_{1}: b_{2} h_{2}
\end{aligned}
$$

If the two triangles have the same base, then the ratio of their area becomes $h_{1}: h_{2}$.
Similarly, the ratio of their area is $b_{1}: b_{2}$ when they have the same height.

Example 3

It is given that D is a point lies on the straight line $B D C$ such that $B D: D C=2: 5$. If the area of $\triangle A B C$ is $35 \mathrm{~cm}^{2}$, find the area of $\triangle A B D$

Solution

As $\triangle A B C$ and $\triangle A B D$ have the same height, so area of $\triangle A B C$: area of $\triangle A B D=(2+5): 2=7: 2$

Area of $\triangle A B D=35 \times \frac{2}{7}=10 \mathrm{~cm}^{2}$

3. More complexed problems

The example below consists of using both methods mentioned above.

Example 4

It is given that $A B C D$ is a trapezium where $A B: C D=1: 3$ and the area of $\triangle A E B$ is $12 \mathrm{~cm}^{2}$
Find the area of the trapezium $A B C D$.

Solution
As $\triangle A B E \sim \triangle C E D$,
area of $\triangle C E D=12 \times 3^{2}=108 \mathrm{~cm}^{2}$

Since $\triangle A E B$ and $\triangle B E C$ share the same height, area of $\triangle B E C=12 \times 3=36 \mathrm{~cm}^{2}$

Similarly, area of $\triangle A E D=12 \times 3=36 \mathrm{~cm}^{2}$

Thus, the area of the trapezium $A B C D=12+108+36+36=192 \mathrm{~cm}^{2}$

When the ratio of area of two triangles do not seemed to have the above two direct relationships, we can express their areas in terms of an unknown. Consider the example below.

Example 5

It is given that M is a point lies on $B C$ such that $A M$ is a median of $\triangle A B C . D$ is a point lies on $A C$ such that $A D: D C=2: 3$. Find area of $\triangle A B M$: area of $\triangle A B D$.

Solution
Let x be the area of $\triangle A B C$.
Note that $B M=\frac{1}{2} B C$. As $\triangle A B C$ and $\triangle A B C$ share the same height,
Area of $\triangle A B M=\frac{1}{2} x$

As $\triangle A B D$ and $\triangle A B C$ share the same height,
Area of $\triangle A B M=\frac{2}{2+3} x=\frac{2}{5} x$

Thus, area of $\triangle A B M:$ area of $\triangle A B D=\frac{1}{2} x: \frac{2}{5} x=5: 4$

Remainders

- When dealing with ratio of area of triangles, we must be very careful with the ratio of corresponding sides.
- Before applying $\frac{A_{1}}{A_{2}}=\left(\frac{\ell_{1}}{\ell_{2}}\right)^{2}$, make sure that the two triangles are similar!
- Try to find the pair of triangles with same base/height such that you can use ratio of area = ratio of height/base.
- If necessary, add straight lines to the diagram to facilitate calculations.

