

website: www.headway.edu.hk

F.6 MATHEMATICS MODULE 2

Unit 13 – Matrices and Determinants

(English Version)

進住 Super Maths 數學團隊

> Dr. Herbert Lam Jackie Tai Andrew Lai K.H. Yau

Unit 13 – Matrices and Determinants

A. Fundamental Framework of Matrices

I. Basic concepts and algebraic operations

A **matrix** A of size (order) $m \times n$ is a rectangular array of numbers with m (horizontal) rows and n (vertical) columns,

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ or } (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

The element a_{ij} (in the i^{th} row and the j^{th} column) is called the $i \times j$ or (i, j) entry of the matrix.

Two matrices A and B are said to be **equal** if they have the same size and the corresponding entries are equal.

If A and B are of the same size $m \times n$, then A + B, the **sum** of A and B, is a matrix of size $m \times n$, with its entries equal to the sum of the corresponding entries of A and B.

Let A be a matrix of size $m \times n$, and λ a certain number, then λA is a matrix of size $m \times n$, with its entries equal to λ times the corresponding entries of A. λA is the **scalar multiple** of A by λ .

By definition, A - B = A + (-1)B. And (-1)B is usually written as -B.

Let $A = [a_{ij}]$ be an $m \times n$ matrix, and $B = [b_{ij}]$ be an $n \times p$ matrix. Then the i^{th} row of A is $[a_{i1}, a_{i2} \cdots a_{in}]$, and

the j^{th} column of B is $\begin{vmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{vmatrix}$.

The **matrix product** of A and B, written as AB, is a matrix $[c_{ij}]$ of size $m \times p$ defined as follows.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nj} & \cdots & b_{np} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{bmatrix}$$

where
$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

 a_{i1} : 1^{st} element of the i^{th} row of A.

 b_{1i} : 1st element of the j^{th} column of B.

For example, taking the 2^{nd} row of A and the 1^{st} column of B, we obtain $c_{21} = a_{21}b_{11} + a_{22}b_{21} + \dots + a_{2n}b_{n1}$.

Note:

The definition of matrix multiplication requires that the number of columns of the first factor A be the same as the number of rows of the second factor B in order to form the product AB. If this condition is not satisfied, the product is undefined.

www.headway.edu.hk

Example 1

Given the matrices,

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 4 \\ -2 & 5 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ -1 & 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

compute the following

$$A+B$$
, $A+C$, $B-3A$, AB , AC , CA .

Solution:

$$A+B = \begin{bmatrix} 1+0 & -1+1 & 2+1 \\ 0+1 & 3+0 & 4+2 \\ -2-1 & 5+2 & -1+1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 3 & 6 \\ -3 & 7 & 0 \end{bmatrix}.$$

Since A is 3×3 , C is 3×1 , thus A+C is undefined.

$$B - 3A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ -1 & 2 & 1 \end{bmatrix} - \begin{bmatrix} 3 & -3 & 6 \\ 0 & 9 & 12 \\ -6 & 15 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 0-3 & 1-(-3) & 1-6 \\ 1-0 & 0-9 & 2-12 \\ -1-(-6) & 2-15 & 1-(-3) \end{bmatrix} = \begin{bmatrix} -3 & 4 & -5 \\ 1 & -9 & -10 \\ 5 & -13 & 4 \end{bmatrix}.$$

$$AB = \begin{bmatrix} 1 \times 0 + (-1) \times 1 + 2 \times (-1) & 1 \times 1 + (-1) \times 0 + 2 \times 2 & 1 \times 1 + (-1) \times 2 + 2 \times 1 \\ 0 \times 0 + 3 \times 1 + 4 \times (-1) & 0 \times 1 + 3 \times 0 + 4 \times 2 & 0 \times 1 + 3 \times 2 + 4 \times 1 \\ (-2) \times 0 + 5 \times 1 + (-1) \times (-1) & (-2) \times 1 + 5 \times 0 + (-1) \times 2 & (-2) \times 1 + 5 \times 2 + (-1) \times 1 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 5 & 1 \\ -1 & 8 & 10 \\ 6 & -4 & 7 \end{bmatrix}.$$

$$AC = \begin{bmatrix} 1 \times 1 + (-1) \times (-1) + 2 \times 2 \\ 0 \times 1 + 3 \times (-1) + 4 \times 2 \\ (-2) \times 1 + 5 \times (-1) + (-1) \times 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \\ -9 \end{bmatrix}.$$

C is 3×1 , A is 3×3 , and $1\neq3$, hence CA is undefined.

Special Matrices

Row Matrix: is a matrix with only 1 row, i.e. a $1 \times n$ matrix. e.g. $(2 \ 5), (3 \ 4 \ 7)$.

Column Matrix: is a matrix with only 1 column, i.e. a $n \times 1$ matrix. e.g. $\binom{2}{6}$, $\binom{4}{5}$.

Zero Matrix (or null matrix): is a matrix with all its entries equal zero

e.g.
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

The zero matrix of order $m \times n$ is denoted by $\mathbf{0}_{m \times n}$ or simply $\mathbf{0}$.

Square Matrix: is a matrix with equal number of rows and columns. A $n \times n$ square matrix is said to be of order n.

e.g.
$$\begin{pmatrix} 2 & 2 \\ 4 & 7 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 2 & 5 \\ 7 & 1 & -9 \\ 2 & 4 & 3 \end{pmatrix}$ are square matrices of order 2 and 3 respectively.

Diagonal Matrix: is a square matrix A with all its entries a_{ij} , where $i \neq j$, equal to zero.

e.g.
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Identity Matrix or Unit Matrix: is a diagonal matrix A with all its entries $a_{ii} = 1$. A unit matrix of order n is denoted by I_n or simply I.

e.g.
$$I_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

General properties of matrices

Let A, B, and C be matrices, and λ , λ_1 & λ_2 be scalars. Provided the operations make sense, then

- 1. A + B = B + A (Commutative law of addition)
- 2. A+(B+C)=(A+B)+C (Associative law of addition)
- 3. Let 0 be a zero matrix, then A+0=0+A=A (Additive identity)
- 4. For any matrix A, A+(-1)A=A+(-A)=0, a zero matrix (Additive inverse)
- 5. $\lambda_1(\lambda_2 A) = \lambda_1 \lambda_2(A)$
- 6. $(\lambda_1 + \lambda_2)A = \lambda_1 A + \lambda_2 A$
- 7. $\lambda(A+B) = \lambda A + \lambda B$
- 8. A(BC) = (AB)C (Associative law of multiplication)
- *9. (A+B)C = AC + BC(Distributive law: Multiplication is right distributive over addition)
- *10. A(B+C) = AB + AC (Distributive law: Multiplication is left distributive over addition)
- 11. $(\lambda A)B = \lambda(AB)$
- 12. $A(\lambda B) = \lambda(AB)$
- 13. Let I be an identity matrix. Then AI = A and IA = A.
- *14. The transpose of a matrix, A^{T}

e.g.
$$A = \begin{bmatrix} 2 & 3 & 4 \\ -1 & 2 & -2 \end{bmatrix}$$
 $A^{T} = \begin{bmatrix} 2 & -1 \\ 3 & 2 \\ 4 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $B^{T} = \begin{bmatrix} 1 & 3 \end{bmatrix}$.

*15.
$$(AB)^{T} = B^{T}A^{T}$$

Example 2

Find
$$\begin{bmatrix} a & b \\ b & a \end{bmatrix}^n$$
.

Solution

Let
$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Obviously $P^2 = I$. Also $\begin{bmatrix} a & b \\ b & a \end{bmatrix} = aI + bP$.

Then by the Binomial theorem,

$$\begin{bmatrix} a & b \\ b & a \end{bmatrix}^{n} = (aI + bP)^{n} = a^{n}I + C_{1}^{n}a^{n-1}bP + C_{2}^{n}a^{n-2}b^{2}P^{2} + C_{3}^{n}a^{n-3}b^{3}P^{3} + \dots + b^{n}P^{n}$$

$$= (a^{n} + C_{2}^{n}a^{n-2}b^{2} + C_{4}^{n}a^{n-4}b^{4} + \dots)I + (C_{1}^{n}a^{n-1}b + C_{3}^{n}a^{n-3}b^{3} + \dots)P$$

$$= \frac{1}{2} \Big[(a^{n} + C_{1}^{n}a^{n-1}b + C_{2}^{n}a^{n-2}b^{2} + \dots) + (a^{n} - C_{1}^{n}a^{n-1}b + C_{2}^{n}a^{n-2}b^{2} - \dots) \Big] I$$

$$+ \frac{1}{2} \Big[(a^{n} + C_{1}^{n}a^{n-1}b + C_{2}^{n}a^{n-2}b^{2} + \dots) - (a^{n} - C_{1}^{n}a^{n-1}b + C_{2}^{n}a^{n-2}b^{2} - \dots) \Big] P$$

$$= \Big[\frac{(a+b)^{n} + (a-b)^{n}}{2} \Big] I + \Big[\frac{(a+b)^{n} - (a-b)^{n}}{2} \Big] P$$

$$= \frac{1}{2} \Big[(a+b)^{n} + (a-b)^{n} \quad (a+b)^{n} - (a-b)^{n} \\ (a+b)^{n} - (a-b)^{n} \quad (a+b)^{n} + (a-b)^{n} \Big].$$

Note: Another method of finding $\begin{bmatrix} a & b \\ b & a \end{bmatrix}^n$ is to make use of a matrix

 $P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ and its inverse P^{-1} . It is given in Example 5, Section C of this Chapter.

www.headway.edu.hk

Instant Drill 1.

- 1. Evaluate the following expressions:
- a) 2(1 4) + 3(5 2)

b)
$$-\begin{pmatrix} 3 & -2 \\ 6 & 0 \end{pmatrix} - 4\begin{pmatrix} -2 & 0 \\ 1 & 5 \end{pmatrix}$$

c)
$$3 \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} - 6 \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 8 \\ 5 \\ -17 \end{pmatrix}$$

d)
$$2 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} - 3 \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & -1 \\ 1 & -1 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$

2. Let
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & -3 \\ 4 & 0 & 1 \end{pmatrix}$$
, $Q = \begin{pmatrix} -1 & 0 & 1 \\ -2 & -2 & 0 \\ 0 & 8 & 1 \end{pmatrix}$ and $R = \begin{pmatrix} -4 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & 2 & -4 \end{pmatrix}$. Evaluate each of the following

- a) 3P 4Q + 5R
- b) R+P+3Q-4R-2P+2Q+3R
- c) 2P Q + 4R 2Q 7R + P

www.headway.edu.hk

Matrices and Determinants

Exercise 1.

- 1. It is given that $A = \begin{pmatrix} 2 & 5 \\ 3 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} a & 2b \\ c+1 & \frac{d}{3} \end{pmatrix}$. If A = B, find the values of a, b, c and d.
- 2. It is given that $A = \begin{pmatrix} 4 & x \\ 0 & 4 \\ z & y \end{pmatrix}$ and $B = \begin{pmatrix} a+2 & 3a \\ b & 2c \\ ac & b-c \end{pmatrix}$. If 2A = B, find the values of a, b, c, x, y and z
- 3. Evaluate $\begin{pmatrix} 2 & -1 & 4 \\ 5 & 0 & -3 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 2 & 5 \\ 1 & -4 \end{pmatrix}$
- 4. Let $\begin{pmatrix} 2 & 0 & 4 \\ 1 & -1 & t \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 5 \end{pmatrix} = \begin{pmatrix} k \\ 13 \end{pmatrix}$. Find the values of k and t
- 5. Let $\begin{pmatrix} 0 \\ s \\ -3 \end{pmatrix}$ $\begin{pmatrix} -2 & 1 & t \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 8 & -4 & 32 \\ 6 & -3 & 24 \end{pmatrix}$. Find the values of s and t
- 6. Let $\begin{pmatrix} 3 & -2 \\ 4 & x \end{pmatrix} \begin{pmatrix} 7 & -2 \\ 5 & 1 \end{pmatrix} = \begin{pmatrix} 11 & -8 \\ y & y \end{pmatrix}$. Find the values of x and y
- 7. Let $A = \begin{pmatrix} 3x & y \\ -2z & 0 \end{pmatrix}$. If $A \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 27 \\ -4 \end{pmatrix}$ and $A \begin{pmatrix} -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, find A

B. Determinants

I. Basic Concepts

Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
. Then the **determinant** of A , denoted by $|A|$, $det(A)$, or $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$

equals, by definition, $a_{11}a_{22} - a_{12}a_{21}$.

The determinant of an 3×3 matrix is defined in terms of determinants of 2×2 matrices. Thus let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, then the determinant of A is given by

$$a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

The formula for defining the determinant of a larger size square matrix, in terms of smaller size matrices, is given as follows

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{cases} \sum_{j=1}^{n} a_{ij} (-1)^{i+j} M_{ij} & \text{for any } i \cdots (a) \\ \sum_{j=1}^{n} a_{ij} (-1)^{i+j} M_{ij} & \text{for any } j \cdots (b) \end{cases}$$

where M_{ij} denotes the determinant of the submatrix obtained from a square matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{(n \times n)}$ by deleting the i^{th} row and the j^{th} column of A (yielding a square matrix of order n-1).

$$C_{ij} = (-1)^{i+j} M_{ij}$$
 is called the **cofactor** of a_{ij} , and M_{ii} is called the **minor** of a_{ij} .

(a) & (b) are called, respectively, the cofactor (minor) expansion of det(A) by the i^{th} row and j^{th} column. It follows that

- (i) $\det(A^T) = \det(A)$
- (ii) det(A) = 0 if A has a zero row or zero column.

The proof is quite simple and is left to the student.

Example 3

Let $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 1 \\ 1 & 3 & 2 \end{bmatrix}$. Find the minors and cofactors of A and evaluate |A|.

Solution:

$$M_{11} = \begin{vmatrix} 3 & 1 \\ 3 & 2 \end{vmatrix} = 3, \quad M_{12} = \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} = -3, \quad M_{13} = \begin{vmatrix} -1 & 3 \\ 1 & 3 \end{vmatrix} = -6,$$

$$M_{21} = \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = -5, \quad M_{22} = \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} = -1, \quad M_{23} = \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1$$

$$M_{31} = \begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} = -7, \quad M_{32} = \begin{vmatrix} 1 & 3 \\ -1 & 1 \end{vmatrix} = 4, \quad M_{33} = \begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} = 5.$$

Hence $C_{11}=3$, $C_{12}=3$, $C_{13}=-6$, $C_{21}=5$, $C_{22}=-1$, $C_{23}=-1$, $C_{31}=-7$, $C_{32}=-4$, $C_{33}=5$.

We can use cofactor expansion by any row or column, e.g. $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$ (expansion by the 1^{st} row)

$$=(1)(3)+(2)(3)+(3)(-6)=-9$$
,

or $a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32}$ (expansion by the 2^{nd} column) = (2)(3) + (3)(-1) + (3)(-4) = -9.

Note: To evaluate a 3×3 determinant, we can use the **Rule of Sarrus.**

 $\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}.$

www.headway.edu.hk

Instant Drill 2.

1. Consider
$$\begin{vmatrix} 2 & 4 & 1 \\ 3 & 1 & 5 \\ 0 & 1 & 2 \end{vmatrix}$$
.

- (a) Find M_{23} .
- (b) Find A_{31} .
- (c) Find A_{32} .

2. Find the value of each of the following determinants

- $\mathbf{a.} \qquad \begin{vmatrix} 3 & 1 \\ 4 & 2 \end{vmatrix}$
- **c.** $\begin{vmatrix} 8 & -5 \\ -6 & 9 \end{vmatrix}$

- **b.** $\begin{vmatrix} 2 & 0 \\ 7 & -9 \end{vmatrix}$
- **d.** $\begin{vmatrix} -1 & -9 \\ -6 & -4 \end{vmatrix}$

3. Find the value of each of the following determinants by cofactor expansion.

- $\begin{array}{c|cccc} \mathbf{a.} & \begin{bmatrix} 0 & 2 & 5 \\ 1 & 4 & 8 \\ 0 & 9 & 7 \end{bmatrix} \end{array}$
- $\begin{array}{c|cccc} \mathbf{c.} & \begin{array}{c|cccc} 1 & 1 & 1 \\ 2 & 0 & 3 \\ -4 & 5 & 7 \end{array}$
- e. $\begin{vmatrix} 1 & 3 & 5 \\ 2 & -4 & 3 \\ -3 & 11 & -1 \end{vmatrix}$

- $\begin{vmatrix} 9 & 0 & 4 \\ -3 & 5 & 0 \\ 7 & 0 & 2 \end{vmatrix}$
- **f.** $\begin{vmatrix} 3 & -6 & 5 \\ 1 & -2 & -1 \\ 4 & 8 & 7 \end{vmatrix}$

II. Further properties of determinants

Aside from using cofactor expansion to evaluate determinants, the following properties are often helpful in computation.

1. Let
$$A$$
 be of the form
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & a_{nn} \end{vmatrix}$$
, i.e. entries below the diagonal are zeros.

Then $\det A = |A| = a_{11}a_{22}\cdots a_{nn}$.

- 2. Let *A* be an $n \times n$ matrix. And *B* is obtained by interchanging any two rows (or columns) of *A*. Then |A| = -|B|.
- 3. If one row of A is a multiple of another row, then |A| = 0.
 - 4. If *B* is the matrix obtained by adding a multiple of one row (or column) of *A* to another row (column), then |B| = |A|.
 - *5. If B is the matrix obtained by multiplying each entry of a row (or column) of A by the same number k, then |B| = k|A|.
 - *6. The determinant of the product of two square matrices of order n is the product of their determinants. That is, |AB| = |A||B|.

Example 4

Simplify the determinant $\begin{vmatrix} a+b & ab & a^2b^2 \\ b+c & bc & b^2c^2 \\ c+a & ca & c^2a^2 \end{vmatrix}$, assuming a, b & c are nonzero.

Solution:

$$\begin{vmatrix} a+b & ab & a^2b^2 \\ b+c & bc & b^2c^2 \\ c+a & ca & c^2a^2 \end{vmatrix} = \begin{vmatrix} a+b-(b+c) & ab-bc & a^2b^2-b^2c^2 \\ b+c & bc & b^2c^2 \\ c+a-(b+c) & ca-bc & c^2a^2-b^2c^2 \end{vmatrix}$$
 (R1-R2)

$$= \begin{vmatrix} a-c & b(a-c) & b^{2}(a+c)(a-c) \\ b+c & bc & b^{2}c^{2} \\ a-b & c(a-b) & c^{2}(a+b)(a-b) \end{vmatrix}$$

$$= (a-c)(a-b) \begin{vmatrix} 1 & b & b^{2}(a+c) \\ b+c & bc & b^{2}c^{2} \\ 1 & c & c^{2}(a+b) \end{vmatrix}$$

$$= \frac{(a-c)(a-b)}{bc} \begin{vmatrix} 1 \cdot c - (b+c) & b \cdot c - bc & b^{2}(a+c) \cdot c - b^{2}c^{2} \\ b + c & bc & b^{2}c^{2} \\ 1 \cdot b - (b+c) & c \cdot b - bc & c^{2}(a+b) \cdot b - b^{2}c^{2} \end{vmatrix}$$

$$= \frac{(a-c)(a-b)}{bc} \begin{vmatrix} -b & 0 & b^2ac \\ b+c & bc & b^2c^2 \\ -c & 0 & c^2ab \end{vmatrix} = (a-c)(a-b) \begin{vmatrix} -1 & 0 & bac \\ b+c & bc & b^2c^2 \\ -1 & 0 & cab \end{vmatrix}$$

$$= (a-c)(a-b) \cdot bc \begin{vmatrix} -1 & bac \\ -1 & cab \end{vmatrix}$$
$$= bc(a-b)(a-c)[-cab - (-bac)] = 0.$$

www.headway.edu.hk

Instant Drill 3.

1. Prove the following identities.

a.
$$\begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = (a+2)(a-1)^2$$

a.
$$\begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = (a+2)(a-1)^2$$
 b. $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ yz & zx & xy \end{vmatrix} = (x-y)(y-z)(z-x)$

c.
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 - bc & b^2 - ac & c^2 - ab \end{vmatrix} = 0$$

c.
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 - bc & b^2 - ac & c^2 - ab \end{vmatrix} = 0$$
 d. $\begin{vmatrix} a & b & c \\ b - c & a + c & b - a \\ b + c & a - c & b + a \end{vmatrix} = 2(a+b)(a-c)(a-b+c)$

2. Factorize the determinant

$$\begin{vmatrix} x^3 & y^3 & z^3 \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix}$$

www.headway.edu.hk

Exercise 2.

1. Factorize
$$\begin{vmatrix} 4 & x+1 & x+1 \\ x+1 & (x+2)^2 & 1 \\ x+1 & 1 & (x+2)^2 \end{vmatrix}$$
.

2. Show that
$$\begin{vmatrix} b^2 + c^2 & ab & ac \\ ab & c^2 + a^2 & bc \\ ac & bc & a^2 + b^2 \end{vmatrix} = 4a^2b^2c^2.$$

3.(a) Factorize
$$\begin{vmatrix} x & 2 & -5 \\ 2 & x & -5 \\ -5 & 2 & x \end{vmatrix}$$
.

(b) Hence solve
$$\begin{vmatrix} x & 2 & -5 \\ 2 & x & -5 \\ -5 & 2 & x \end{vmatrix} = 0$$

C. The Inverse of Matrix

I. Definition

Suppose A is a square matrix of size $n \times n$. If there exists an $n \times n$ matrix B such that AB = BA = I (the $n \times n$ identity matrix), then B is called the **inverse** of A. Obviously, the matrix A is also the inverse of B.

A matrix which has an inverse is said to be **invertible** or **nonsingular**. Otherwise, it is said to be **singular** or **non-invertible**.

We denote the inverse of A be A^{-1}

FORMULA

$$A^{-1} = \frac{1}{|A|} [C_{ij}]_{n \times n}^{T}$$

Example 5

(a) Show that
$$\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & \frac{1}{b} \\ \frac{1}{a} & 0 \end{pmatrix}$$
, where $a \neq 0$ and $b \neq 0$.

(b) Hence find
$$\begin{pmatrix} 0 & -2 \\ 3 & 0 \end{pmatrix}^{-1}$$
.

Solution:

www.headway.edu.hk

Instant Drill 4.

- 1.(a) Show that $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -k \\ 0 & 1 \end{pmatrix}$, where k is a real number.
- (b) Hence find the inverse of the following matrices.
 - $(i) \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}$
 - $(ii)\begin{pmatrix} 3 & 2 \\ 0 & 3 \end{pmatrix}$

- 2. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, where a, b, c and d are real numbers.
 - (a) Find the values of a, b, c and d.
 - (b) Hence find $\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}^{-1}$.
- 3. It is given that $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$.
 - (a) Find $A^2 3A + 2I$.
 - (b) Hence find A^{-1} .

Exercise 3.

1. Let
$$X = \begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 1 & 5 \end{pmatrix}$$
.

- (a) Show that (X 4I)(6I X) = I.
- (b) Show that $X^2 10X + 25I = 0$.
- (c) Hence find X^{-1} .

2. Let
$$A = \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix}$$
.

- (a) If $A^2 + xA + yI = 0$, find the values of x and y.
- (b) Hence find A^{-1} .

3. It is given that
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- (a) Find A^2 .
- (b) Hence find A^{-1} .
- (c) Find A^{101} .

4. Let
$$A = \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & 3 \\ -1 & 5 \end{pmatrix}$.

- (a) Prove that AB = BA.
- (b) Verify that $(A + B)^2 = A^2 + 2AB + B^2$.

5. Let
$$A = \begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$.

- (a) Find AB and BA.
- (b) Find A^2 and B^2 .
- (c) Verify that $(A+B)^2 \neq A^2 + 2AB + B^2$.
- (d) Let $C = \begin{pmatrix} 1 & 2 \\ 4 & -1 \end{pmatrix}$. Verify that $(A + C)^2 = A^2 + 2AC + C^2$.

www.headway.edu.hk

6. Let
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 and $B = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.

- (a) Show that AB = BA = I.
- (b) Hence find A^{-1} and B^{-1} .
- (c) Prove, by mathematical induction, that for all positive integers n, $A^n = \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix}$.
- (d) Find $(B^n)^{-1}$, where n is a positive integer.

7. Let
$$A = \begin{pmatrix} 4 & 9 \\ -1 & -2 \end{pmatrix}$$
.

- (a) Prove that $A^2 2A + I = 0$.
- (b) Prove, by mathematical induction, that for all positive integers n, $A^n = nA (n-1)I$.
- (c) Find $\begin{pmatrix} 4 & 9 \\ -1 & -2 \end{pmatrix}^{2010}$.

8. Let
$$A = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$
, where a, b and c are real numbers.

- (a) Find A^2 and A^3 .
- (b) Show that $(A^2 A + I)(A + I) = A^3 + I$.
- (c) Hence find $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}^{-1}$.

9. Let
$$P = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$
.

- (a) Prove that $P^3 = -I$, and hence prove that $P^6 = I$.
- (b) Find P^{-1} .
- (c) Prove that $P^5 + P^4 + P^3 + P^2 + P + I = \mathbf{0}$.
- (d) Prove that $(P^{-1})^5 + (P^{-1})^4 + (P^{-1})^3 + (P^{-1})^2 + P^{-1} + I = \mathbf{0}$.

www.headway.edu.hk

10. Let
$$U = \frac{1}{3} \begin{pmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{pmatrix}$$
 and $A = \frac{1}{9} \begin{pmatrix} 17 & -8 & 4 \\ -8 & 17 & -4 \\ 4 & -4 & 11 \end{pmatrix}$.

- (a) Prove that $U^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix}$.
- (b) Let $M = UAU^{-1}$. Find M.
- (c) It is given that $\begin{pmatrix} c_1 & 0 & 0 \\ 0 & c_2 & 0 \\ 0 & 0 & c_3 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{c_1} & 0 & 0 \\ 0 & \frac{1}{c_2} & 0 \\ 0 & 0 & \frac{1}{c_3} \end{pmatrix} \text{ and } \begin{pmatrix} c_1 & 0 & 0 \\ 0 & c_2 & 0 \\ 0 & 0 & c_3 \end{pmatrix}^n = \begin{pmatrix} c_1^n & 0 & 0 \\ 0 & c_2^n & 0 \\ 0 & 0 & c_3^n \end{pmatrix} \text{ for all }$

positive integers n, where c_1 , c_2 and c_3 are real numbers. Find $(A^{-1})^n$.

- 11. Let $A = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 5 & 4 \end{pmatrix}$. Find $A^T A$ and AA^T .
- 12. Let $X = \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix}$. Find $X^T X$ and XX^T .
- 13. It is given that A, B and C are square matrices, where $A^2B^T = C$, |A| = 2, |C| = 3. Find the value of |B|.
- 14. It is given that P, Q and R are 2×2 matrices, where R is invertible, $P^TQ^3 = -R^{-1}$, $P^2R = I$ and |P| = 8. Find the values of |Q| and |R|.
- 15. Let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where a, b, c and d are real numbers. It is given that $M \begin{pmatrix} -1 \\ -2 \end{pmatrix} = \begin{pmatrix} -5 \\ -9 \end{pmatrix}$ and $M \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} -14 \\ -25 \end{pmatrix}$.
- (a) Find the values of a, b, c and d.
- (b) Find M^{-1} .
- (c)Find $M^{-1} \begin{pmatrix} -5 & -14 \\ -9 & -25 \end{pmatrix}$.

未完待續