

Headway Education

website：www．headway．edu．hk

F． 6 MATHEMATICS MODULE 2

Unit 13 －Matrices and Determinants

（English Version）

迤佳 Super Maths
 數学園隊

Dr．Herbert Lam
Jackie Tai
Andrew Lai
K．H．Yau

© All Rights Reserved

Unit 13 －Matrices and Determinants

A．Fundamental Framework of Matrices

I．Basic concepts and algebraic operations

A matrix A of size（order）$m \times n$ is a rectangular array of numbers with m （horizontal）rows and n（vertical）columns，

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \text { or }\left(a_{i j}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \text {. }
$$

The element $a_{i j}$（in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column）is called the $i \times j$ or (i, j) entry of the matrix．

Two matrices A and B are said to be equal if they have the same size and the corresponding entries are equal．

If A and B are of the same size $m \times n$ ，then $A+B$ ，the sum of A and B ，is a matrix of size $m \times n$ ，with its entries equal to the sum of the corresponding entries of A and B ．

Let A be a matrix of size $m \times n$ ，and λ a certain number，then λA is a matrix of size $m \times n$ ，with its entries equal to λ times the corresponding entries of $A . \lambda A$ is the scalar multiple of A by λ ．
By definition，$A-B=A+(-1) B$ ．And $(-1) B$ is usually written as $-B$ ．

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix，and $B=\left[b_{i j}\right]$ be an $n \times p$ matrix．
Then the $i^{\text {th }}$ row of A is $\left[a_{i 1}, a_{i 2} \cdots a_{i n}\right]$ ，and
the $j^{\text {th }}$ column of B is $\left[\begin{array}{c}b_{1 j} \\ b_{2 j} \\ \vdots \\ b_{n j}\end{array}\right]$ ．

The matrix product of A and B ，written as $A B$ ，is a matrix $\left[c_{i j}\right]$ of size $m \times p$ defined as follows．

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{cccccc}
b_{11} & b_{12} & \cdots & b_{1 j} & \cdots & b_{1 p} \\
b_{21} & b_{22} & \cdots & b_{2 j} & \cdots & b_{2 p} \\
\vdots & \vdots & & \vdots & & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n j} & \cdots & b_{n p}
\end{array}\right]=\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & & \vdots \\
c_{m 1} & c_{m 2} & \cdots & c_{m p}
\end{array}\right]
$$

where

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

$$
a_{i 1}: 1^{\text {st }} \text { element of the } i^{\text {th }} \text { row of } A
$$

$$
b_{1 j}: 1^{s t} \text { element of the } j^{\text {th }} \text { column of } B
$$

For example，taking the $2^{\text {nd }}$ row of A and the $1^{\text {st }}$ column of B ，we obtain

$$
c_{21}=a_{21} b_{11}+a_{22} b_{21}+\cdots+a_{2 n} b_{n 1} .
$$

Note：

The definition of matrix multiplication requires that the number of columns of the first factor A be the same as the number of rows of the second factor B in order to form the product $A B$ ．If this condition is not satisfied，the product is undefined．

Example 1

Given the matrices，

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 3 & 4 \\
-2 & 5 & -1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 2 \\
-1 & 2 & 1
\end{array}\right], \quad C=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right],
$$

compute the following

$$
A+B, A+C, B-3 A, A B, A C, C A .
$$

Solution：

$$
A+B=\left[\begin{array}{ccc}
1+0 & -1+1 & 2+1 \\
0+1 & 3+0 & 4+2 \\
-2-1 & 5+2 & -1+1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 3 \\
1 & 3 & 6 \\
-3 & 7 & 0
\end{array}\right] .
$$

Since A is $3 \times 3, C$ is 3×1 ，thus $A+C$ is undefined．

$$
\begin{aligned}
& B-3 A=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 2 \\
-1 & 2 & 1
\end{array}\right]-\left[\begin{array}{ccc}
3 & -3 & 6 \\
0 & 9 & 12 \\
-6 & 15 & -3
\end{array}\right] \\
&=\left[\begin{array}{ccc}
0-3 & 1-(-3) & 1-6 \\
1-0 & 0-9 & 2-12 \\
-1-(-6) & 2-15 & 1-(-3)
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 4 & -5 \\
1 & -9 & -10 \\
5 & -13 & 4
\end{array}\right] . \\
& A B=\left[\begin{array}{cc}
1 \times 0+(-1) \times 1+2 \times(-1) & 1 \times 1+(-1) \times 0+2 \times 2 \\
0 \times 0+3 \times 1+4 \times(-1) & 0 \times 1+3 \times 0+4 \times 2 \\
(-2) \times 0+5 \times 1+(-1) \times(-1) & (-2) \times 1+5 \times 0+(-1) \times 2 \\
(-2) \times 1+5 \times 2+(-1) \times 1
\end{array}\right] \\
&=\left[\begin{array}{cc}
-3 & 1 \\
-1 & 8 \\
8 & 10 \\
-4 & 7
\end{array}\right] . \\
& A C=\left[\begin{array}{c}
1 \times 1+(-1) \times(-1)+2 \times 2 \\
0 \times 1+3 \times(-1)+4 \times 2 \\
(-2) \times 1+5 \times(-1)+(-1) \times 2
\end{array}\right]=\left[\begin{array}{c}
6 \\
5 \\
-9
\end{array}\right] . \\
& C \text { is } 3 \times 1, A \text { is } 3 \times 3, \text { and } 1 \neq 3, \text { hence } C A \text { is undefined. }
\end{aligned}
$$

Matrices and Determinants

www．headway．edu．hk

Special Matrices

Row Matrix：is a matrix with only 1 row，i．e．a $1 \times n$ matrix．e．g．$\left(\begin{array}{ll}2 & 5\end{array}\right),\left(\begin{array}{lll}3 & 4 & 7\end{array}\right)$ ．
Column Matrix：is a matrix with only 1 column，i．e．a $n \times 1$ matrix．e．g．$\binom{2}{6},\left(\begin{array}{l}4 \\ 5 \\ 8\end{array}\right)$ ．
Zero Matrix（or null matrix）：is a matrix with all its entries equal zero
e．g．$\binom{0}{0},\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
The zero matrix of order $m \times n$ is denoted by $\mathbf{0}_{m \times n}$ or simply $\mathbf{0}$ ．

Square Matrix：is a matrix with equal number of rows and columns．A $n \times n$ square matrix is said to be of order n ．
e．g．$\left(\begin{array}{ll}2 & 2 \\ 4 & 7\end{array}\right),\left(\begin{array}{ccc}0 & 2 & 5 \\ 7 & 1 & -9 \\ 2 & 4 & 3\end{array}\right)$ are square matrices of order 2 and 3 respectively．

Diagonal Matrix：is a square matrix A with all its entries $a_{i j}$ ，where $i \neq j$ ，equal to zero．
e．g．$\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 4\end{array}\right)$

Identity Matrix or Unit Matrix：is a diagonal matrix A with all its entries $a_{i i}=1$ ．A unit matrix of order n is denoted by I_{n} or simply I ．
e．g．$I_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), I_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Matrices and Determinants

www．headway．edu．hk

General properties of matrices

Let A, B ，and C be matrices，and $\lambda, \lambda_{1} \& \lambda_{2}$ be scalars．Provided the operations make sense，then
1．$A+B=B+A$（Commutative law of addition）
2．$A+(B+C)=(A+B)+C$（Associative law of addition）

3．Let 0 be a zero matrix，then $A+0=0+A=A$（Additive identity）
4．For any matrix $A, A+(-1) A=A+(-A)=0$ ，a zero matrix
（Additive inverse）
5．$\lambda_{1}\left(\lambda_{2} A\right)=\lambda_{1} \lambda_{2}(A)$
6．$\left(\lambda_{1}+\lambda_{2}\right) A=\lambda_{1} A+\lambda_{2} A$
7．$\lambda(A+B)=\lambda A+\lambda B$
8．$\quad A(B C)=(A B) C$（Associative law of multiplication）
＊9．$(A+B) C=A C+B C$
（Distributive law：Multiplication is right distributive over addition ）
＊10．$A(B+C)=A B+A C$
（Distributive law：Multiplication is left distributive over addition ）
11．$(\lambda A) B=\lambda(A B)$
12．$A(\lambda B)=\lambda(A B)$

13．Let I be an identity matrix．Then $A I=A$ and $I A=A$ ．
＊14．The transpose of a matrix，A^{T}
e．g．$A=\left[\begin{array}{rrr}2 & 3 & 4 \\ -1 & 2 & -2\end{array}\right] \quad A^{T}=\left[\begin{array}{rr}2 & -1 \\ 3 & 2 \\ 4 & -2\end{array}\right], \quad B=\left[\begin{array}{l}1 \\ 3\end{array}\right] \quad B^{T}=\left[\begin{array}{ll}1 & 3\end{array}\right]$ ．
＊15．$(A B)^{T}=B^{T} A^{T}$

Example 2

Find $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]^{n}$ ．

Solution

Let $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ ．Obviously $P^{2}=I$ ．Also $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]=a I+b P$ ．
Then by the Binomial theorem，

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]^{n} } & =(a I+b P)^{n}=a^{n} I+C_{1}^{n} a^{n-1} b P+C_{2}^{n} a^{n-2} b^{2} P^{2}+C_{3}^{n} a^{n-3} b^{3} P^{3}+\cdots+b^{n} P^{n} \\
& =\left(a^{n}+C_{2}^{n} a^{n-2} b^{2}+C_{4}^{n} a^{n-4} b^{4}+\cdots\right) I+\left(C_{1}^{n} a^{n-1} b+C_{3}^{n} a^{n-3} b^{3}+\cdots\right) P \\
& =\frac{1}{2}\left[\left(a^{n}+C_{1}^{n} a^{n-1} b+C_{2}^{n} a^{n-2} b^{2}+\cdots\right)+\left(a^{n}-C_{1}^{n} a^{n-1} b+C_{2}^{n} a^{n-2} b^{2}-\cdots\right)\right] I \\
& +\frac{1}{2}\left[\left(a^{n}+C_{1}^{n} a^{n-1} b+C_{2}^{n} a^{n-2} b^{2}+\cdots\right)-\left(a^{n}-C_{1}^{n} a^{n-1} b+C_{2}^{n} a^{n-2} b^{2}-\cdots\right)\right] P \\
& =\left[\frac{(a+b)^{n}+(a-b)^{n}}{2}\right] I+\left[\frac{(a+b)^{n}-(a-b)^{n}}{2}\right] P \\
& =\frac{1}{2}\left[\begin{array}{ll}
(a+b)^{n}+(a-b)^{n} & (a+b)^{n}-(a-b)^{n} \\
(a+b)^{n}-(a-b)^{n} & (a+b)^{n}+(a-b)^{n}
\end{array}\right] .
\end{aligned}
$$

Note：Another method of finding $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]^{n}$ is to make use of a matrix $P=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ and its inverse P^{-1} ．It is given in Example 5，Section C of this Chapter．
www．headway．edu．hk

Instant Drill 1.

1．Evaluate the following expressions：
a） $2\left(\begin{array}{ll}1 & 4\end{array}\right)+3\left(\begin{array}{ll}5 & 2\end{array}\right)$
b）$-\left(\begin{array}{cc}3 & -2 \\ 6 & 0\end{array}\right)-4\left(\begin{array}{cc}-2 & 0 \\ 1 & 5\end{array}\right)$
c） $3\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)-6\left(\begin{array}{c}2 \\ 2 \\ -4\end{array}\right)+2\left(\begin{array}{c}8 \\ 5 \\ -17\end{array}\right)$
d） $2\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)-3\left(\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right)-\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & -1 & 1 \\ -1 & 0 & 0\end{array}\right)$

2．Let $P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 0 & -3 \\ 4 & 0 & 1\end{array}\right), Q=\left(\begin{array}{ccc}-1 & 0 & 1 \\ -2 & -2 & 0 \\ 0 & 8 & 1\end{array}\right)$ and $R=\left(\begin{array}{ccc}-4 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & 2 & -4\end{array}\right)$ ．Evaluate each of the following
a） $3 P-4 Q+5 R$
b）$R+P+3 Q-4 R-2 P+2 Q+3 R$
c） $2 P-Q+4 R-2 Q-7 R+P$

Matrices and Determinants

www．headway．edu．hk

Exercise 1.

1．It is given that $A=\left(\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}a & 2 b \\ c+1 & \frac{d}{3}\end{array}\right)$ ．If $A=B$ ，find the values of a, b, c and d ．
2．It is given that $A=\left(\begin{array}{ll}4 & x \\ 0 & 4 \\ z & y\end{array}\right)$ and $B=\left(\begin{array}{cc}a+2 & 3 a \\ b & 2 c \\ a c & b-c\end{array}\right)$ ．If $2 A=B$ ，find the values of a, b, c, x, y and z

3．Evaluate $\left(\begin{array}{ccc}2 & -1 & 4 \\ 5 & 0 & -3\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 2 & 5 \\ 1 & -4\end{array}\right)$

4．Let $\left(\begin{array}{ccc}2 & 0 & 4 \\ 1 & -1 & t\end{array}\right)\left(\begin{array}{l}3 \\ 0 \\ 5\end{array}\right)=\binom{k}{13}$ ．Find the values of k and t

5．Let $\left(\begin{array}{c}0 \\ s \\ -3\end{array}\right)\left(\begin{array}{lll}-2 & 1 & t\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 8 & -4 & 32 \\ 6 & -3 & 24\end{array}\right)$ ．Find the values of s and t

6．Let $\left(\begin{array}{cc}3 & -2 \\ 4 & x\end{array}\right)\left(\begin{array}{cc}7 & -2 \\ 5 & 1\end{array}\right)=\left(\begin{array}{cc}11 & -8 \\ y & y\end{array}\right)$ ．Find the values of x and y
7．Let $A=\left(\begin{array}{cc}3 x & y \\ -2 z & 0\end{array}\right)$ ．If $A\binom{4}{1}=\binom{27}{-4}$ and $A\binom{-1}{3}=\binom{3}{1}$ ，find A

Matrices and Determinants

www.headway.edu.hk

B. Determinants

I. Basic Concepts

Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. Then the determinant of A, denoted by $|A|$, $\operatorname{det}(A)$, or $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|$ equals, by definition, $a_{11} a_{22}-a_{12} a_{21}$.
The determinant of an 3×3 matrix is defined in terms of determinants of 2×2 matrices. Thus let
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then the determinant of A is given by

$$
a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| .
$$

The formula for defining the determinant of a larger size square matrix, in terms of smaller size matrices, is given as follows
$\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & & & \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|=\left\{\begin{array}{l}\sum_{j=1}^{n} a_{i j}(-1)^{i+j} M_{i j} \text { for any } i \cdots \cdots(a) \\ \sum_{i=1}^{n} a_{i j}(-1)^{i+j} M_{i j} \text { for any } j \cdots \cdots(b)\end{array}\right.$
where $M_{i j}$ denotes the determinant of the submatrix obtained from a square matrix $A=\left[a_{i j}\right]_{(n \times n)}$ by deleting the $i^{\text {th }}$ row and the $j^{\text {th }}$ column of A (yielding a square matrix of order $n-1$).
$C_{i j}=(-1)^{i+j} M_{i j}$ is called the cofactor of $a_{i j}$, and $M_{i j}$ is called the minor of $a_{i j}$.
(a) \& (b) are called, respectively, the cofactor (minor) expansion of $\operatorname{det}(A)$ by the $i^{\text {th }}$ row and $j^{\text {th }}$ column. It follows that
(i) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
(ii) $\operatorname{det}(A)=0$ if A has a zero row or zero column.

The proof is quite simple and is left to the student.

Matrices and Determinants

www．headway．edu．hk

Example 3

Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 3 & 1 \\ 1 & 3 & 2\end{array}\right]$ ．Find the minors and cofactors of A and evaluate $|A|$ ．

Solution：

$$
\begin{aligned}
& M_{11}=\left|\begin{array}{ll}
3 & 1 \\
3 & 2
\end{array}\right|=3, \quad M_{12}=\left|\begin{array}{cc}
-1 & 1 \\
1 & 2
\end{array}\right|=-3, \quad M_{13}=\left|\begin{array}{cc}
-1 & 3 \\
1 & 3
\end{array}\right|=-6, \\
& M_{21}=\left|\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right|=-5, \quad M_{22}=\left|\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right|=-1, \quad M_{23}=\left|\begin{array}{cc}
1 & 2 \\
1 & 3
\end{array}\right|=1 \\
& M_{31}=\left|\begin{array}{ll}
2 & 3 \\
3 & 1
\end{array}\right|=-7, \quad M_{32}=\left|\begin{array}{cc}
1 & 3 \\
-1 & 1
\end{array}\right|=4, \quad M_{33}=\left|\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right|=5 .
\end{aligned}
$$

Hence $C_{11}=3, C_{12}=3, C_{13}=-6, C_{21}=5, C_{22}=-1, C_{23}=-1$ ，

$$
C_{31}=-7, C_{32}=-4, C_{33}=5 .
$$

We can use cofactor expansion by any row or column，e．g．$|A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$ （expansion by the $1^{\text {st }}$ row）

$$
=(1)(3)+(2)(3)+(3)(-6)=-9,
$$

or $a_{12} C_{12}+a_{22} C_{22}+a_{32} C_{32}$（expansion by the $2^{\text {nd }}$ column）

$$
=(2)(3)+(3)(-1)+(3)(-4)=-9 .
$$

Note：To evaluate a 3×3 determinant，we can use the Rule of Sarrus．

$$
\operatorname{det}(A)=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{31} a_{22} a_{13}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}
$$

Instant Drill 2.

1．Consider $\left|\begin{array}{lll}2 & 4 & 1 \\ 3 & 1 & 5 \\ 0 & 1 & 2\end{array}\right|$ ．
（a）Find M_{23} ．
（b）Find A_{31} ．
（c）Find A_{32} ．

2．Find the value of each of the following determinants
a．$\quad\left|\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right|$
b．$\quad\left|\begin{array}{cc}2 & 0 \\ 7 & -9\end{array}\right|$
c．$\quad\left|\begin{array}{cc}8 & -5 \\ -6 & 9\end{array}\right|$
d．$\left|\begin{array}{ll}-1 & -9 \\ -6 & -4\end{array}\right|$

3．Find the value of each of the following determinants by cofactor expansion．
a．$\quad\left|\begin{array}{lll}0 & 2 & 5 \\ 1 & 4 & 8 \\ 0 & 9 & 7\end{array}\right|$
b．$\left|\begin{array}{ccc}9 & 0 & 4 \\ -3 & 5 & 0 \\ 7 & 0 & 2\end{array}\right|$
c．$\quad\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 0 & 3 \\ -4 & 5 & 7\end{array}\right|$
d．$\left|\begin{array}{ccc}3 & 0 & -2 \\ 1 & 5 & 1 \\ 4 & 2 & 7\end{array}\right|$
e．$\left|\begin{array}{ccc}1 & 3 & 5 \\ 2 & -4 & 3 \\ -3 & 11 & -1\end{array}\right|$
f．$\left|\begin{array}{ccc}3 & -6 & 5 \\ 1 & -2 & -1 \\ 4 & 8 & 7\end{array}\right|$

II．Further properties of determinants

Aside from using cofactor expansion to evaluate determinants，the following properties are often helpful in computation．

1．Let A be of the form $\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & & a_{n n}\end{array}\right|$ ，i．e．entries below the diagonal are zeros．
Then $\operatorname{det} A=|A|=a_{11} a_{22} \cdots a_{n n}$.
2．Let A be an $n \times n$ matrix．And B is obtained by interchanging any two rows （or columns）of A ．Then $|A|=-|B|$ ．

3．If one row of A is a multiple of another row，then $|A|=0$ ．

4．If B is the matrix obtained by adding a multiple of one row（or column）of A to another row（column），then $|B|=|A|$ ．
＊5．If B is the matrix obtained by multiplying each entry of a row（or column）of A by the same number k ，then $|B|=k|A|$ ．
＊6．The determinant of the product of two square matrices of order n is the product of their determinants．That is，$|A B|=|A||B|$ ．

Example 4

Simplify the determinant $\left|\begin{array}{lll}a+b & a b & a^{2} b^{2} \\ b+c & b c & b^{2} c^{2} \\ c+a & c a & c^{2} a^{2}\end{array}\right|$ ，assuming $a, b \& c$ are nonzero．

Solution：

$$
\begin{aligned}
&\left|\begin{array}{ccc}
a+b & a b & a^{2} b^{2} \\
b+c & b c & b^{2} c^{2} \\
c+a & c a & c^{2} a^{2}
\end{array}\right|=\left|\begin{array}{ccc}
a+b-(b+c) & a b-b c & a^{2} b^{2}-b^{2} c^{2} \\
b+c & b c & b^{2} c^{2} \\
c+a-(b+c) & c a-b c & c^{2} a^{2}-b^{2} c^{2}
\end{array}\right| \begin{array}{c}
(R 1-R 2) \\
(R 3-R 2)
\end{array} \\
&=\left|\begin{array}{cc}
a-c & b(a-c) \\
b+c & b c \\
b^{2}(a+c)(a-c) \\
a-b & c(a-b) \\
c^{2}(a+b)(a-b)
\end{array}\right| \\
&=(a-c)(a-b)\left|\begin{array}{ccc}
1 & b & b^{2}(a+c) \\
b+c & b c & b^{2} c^{2} \\
1 & c & c^{2}(a+b)
\end{array}\right| \\
&=\frac{(a-c)(a-b)}{b c}\left|\begin{array}{ccc}
1 \cdot c-(b+c) & b \cdot c-b c & b^{2}(a+c) \cdot c-b^{2} c^{2} \\
b+c & b c & b^{2} c^{2} \\
1 \cdot b-(b+c) & c \cdot b-b c & c^{2}(a+b) \cdot b-b^{2} c^{2}
\end{array}\right| \\
&=\frac{(a-c)(a-b)}{b c}\left|\begin{array}{ccc}
-b & 0 & b^{2} a c \\
b+c & b c & b^{2} c^{2} \\
-c & 0 & c^{2} a b
\end{array}\right|=(a-c)(a-b)\left|\begin{array}{ccc}
-1 & 0 & b a c \\
b+c & b c & b^{2} c^{2} \\
-1 & 0 & c a b
\end{array}\right| \\
&=(a-c)(a-b) \cdot b c\left|\begin{array}{ccc}
-1 & b a c \\
-1 & c a b
\end{array}\right| \\
&=b c(a-b)(a-c)[-c a b-(-b a c)]=0 .
\end{aligned}
$$

www．headway．edu．hk

Instant Drill 3.

1．Prove the following identities．
a．$\left|\begin{array}{ccc}a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a\end{array}\right|=(a+2)(a-1)^{2} \quad$ b．$\left|\begin{array}{ccc}1 & 1 & 1 \\ x & y & z \\ y z & z x & x y\end{array}\right|=(x-y)(y-z)(z-x)$
c．$\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2}-b c & b^{2}-a c & c^{2}-a b\end{array}\right|=0$
d．$\left|\begin{array}{ccc}a & b & c \\ b-c & a+c & b-a \\ b+c & a-c & b+a\end{array}\right|=2(a+b)(a-c)(a-b+c)$

2．Factorize the determinant

$$
\left|\begin{array}{ccc}
x^{3} & y^{3} & z^{3} \\
x & y & z \\
1 & 1 & 1
\end{array}\right|
$$

www．headway．edu．hk

Exercise 2.

1．Factorize $\left|\begin{array}{ccc}4 & x+1 & x+1 \\ x+1 & (x+2)^{2} & 1 \\ x+1 & 1 & (x+2)^{2}\end{array}\right|$ ．
2．Show that $\left|\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ a b & c^{2}+a^{2} & b c \\ a c & b c & a^{2}+b^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$ ．
3．（a）Factorize $\left|\begin{array}{ccc}x & 2 & -5 \\ 2 & x & -5 \\ -5 & 2 & x\end{array}\right|$ ．
（b）Hence solve $\left|\begin{array}{ccc}x & 2 & -5 \\ 2 & x & -5 \\ -5 & 2 & x\end{array}\right|=0$

C．The Inverse of Matrix

I．Definition

Suppose A is a square matrix of size $n \times n$ ．If there exists an $n \times n$ matrix B such that $A B=B A=I$（ the $n \times n$ identity matrix），then B is called the inverse of A ． Obviously，the matrix A is also the inverse of B ．

A matrix which has an inverse is said to be invertible or nonsingular．Otherwise，it is said to be singular or non－invertible．

We denote the inverse of A be A^{-1}

FORMULA

$$
A^{-1}=\frac{1}{|A|}\left[C_{i j}\right]_{n \times n}^{T}
$$

Example 5

（a）Show that $\left(\begin{array}{ll}0 & a \\ b & 0\end{array}\right)^{-1}=\left(\begin{array}{cc}0 & \frac{1}{b} \\ \frac{1}{a} & 0\end{array}\right)$ ，where $a \neq 0$ and $b \neq 0$ ．
（b）Hence find $\left(\begin{array}{cc}0 & -2 \\ 3 & 0\end{array}\right)^{-1}$ ．

Solution：

Instant Drill 4.

1．（a）Show that $\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & -k \\ 0 & 1\end{array}\right)$ ，where k is a real number．
（b）Hence find the inverse of the following matrices．
（i）$\left(\begin{array}{cc}1 & -3 \\ 0 & 1\end{array}\right)$
（ii）$\left(\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right)$

2．Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ ，where a, b, c and d are real numbers．
（a）Find the values of a, b, c and d ．
（b）Hence find $\left(\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right)^{-1}$ ．

3．It is given that $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$ ．
（a）Find $A^{2}-3 A+2 I$ ．
（b）Hence find A^{-1} ．

Exercise 3.

1．Let $X=\left(\begin{array}{lll}5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 1 & 5\end{array}\right)$ ．
（a）Show that $(X-4 I)(6 I-X)=I$ ．
（b）Show that $X^{2}-10 X+25 I=\mathbf{0}$ ．
（c）Hence find X^{-1} ．

2．Let $A=\left(\begin{array}{cc}1 & -2 \\ 3 & 1\end{array}\right)$ ．
（a）If $A^{2}+x A+y I=\mathbf{0}$ ，find the values of x and y ．
（b）Hence find A^{-1} ．

3．It is given that $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ ．
（a）Find A^{2} ．
（b）Hence find A^{-1} ．
（c）Find A^{101} ．

4．Let $A=\left(\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}4 & 3 \\ -1 & 5\end{array}\right)$ ．
（a）Prove that $A B=B A$ ．
（b）Verify that $(A+B)^{2}=A^{2}+2 A B+B^{2}$ ．
5．Let $A=\left(\begin{array}{cc}0 & 1 \\ 2 & -1\end{array}\right)$ and $B=\left(\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right)$ ．
（a）Find $A B$ and $B A$ ．
（b）Find A^{2} and B^{2} ．
（c）Verify that $(A+B)^{2} \neq A^{2}+2 A B+B^{2}$ ．
（d）Let $C=\left(\begin{array}{cc}1 & 2 \\ 4 & -1\end{array}\right)$ ．Verify that $(A+C)^{2}=A^{2}+2 A C+C^{2}$ ．

www．headway．edu．hk

6．Let $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ and $B=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ ．
（a）Show that $A B=B A=I$ ．
（b）Hence find A^{-1} and B^{-1} ．
（c）Prove，by mathematical induction，that for all positive integers $n, A^{n}=\left(\begin{array}{cc}\cos n \theta & -\sin n \theta \\ \sin n \theta & \cos n \theta\end{array}\right)$ ．
（d）Find $\left(B^{n}\right)^{-1}$ ，where n is a positive integer．

7．Let $A=\left(\begin{array}{cc}4 & 9 \\ -1 & -2\end{array}\right)$ ．
（a）Prove that $A^{2}-2 A+I=\mathbf{0}$ ．
（b）Prove，by mathematical induction，that for all positive integers $n, A^{n}=n A-(n-1) I$ ．
（c）Find $\left(\begin{array}{cc}4 & 9 \\ -1 & -2\end{array}\right)^{2010}$ ．

8．Let $A=\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)$ ，where a, b and c are real numbers．
（a）Find A^{2} and A^{3} ．
（b）Show that $\left(A^{2}-A+I\right)(A+I)=A^{3}+I$ ．
（c）Hence find $\left(\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)^{-1}$ ．
9．Let $P=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$ ．
（a）Prove that $P^{3}=-I$ ，and hence prove that $P^{6}=I$ ．
（b）Find P^{-1} ．
（c）Prove that $P^{5}+P^{4}+P^{3}+P^{2}+P+I=\mathbf{0}$ ．
（d）Prove that $\left(P^{-1}\right)^{5}+\left(P^{-1}\right)^{4}+\left(P^{-1}\right)^{3}+\left(P^{-1}\right)^{2}+P^{-1}+I=\mathbf{0}$ ．

www．headway．edu．hk

10．Let $U=\frac{1}{3}\left(\begin{array}{ccc}2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2\end{array}\right)$ and $A=\frac{1}{9}\left(\begin{array}{ccc}17 & -8 & 4 \\ -8 & 17 & -4 \\ 4 & -4 & 11\end{array}\right)$ ．
（a）Prove that $U^{-1}=\frac{1}{3}\left(\begin{array}{ccc}2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2\end{array}\right)$ ．
（b）Let $M=U A U^{-1}$ ．Find M ．
（c）It is given that $\left(\begin{array}{ccc}c_{1} & 0 & 0 \\ 0 & c_{2} & 0 \\ 0 & 0 & c_{3}\end{array}\right)^{-1}=\left(\begin{array}{ccc}\frac{1}{c_{1}} & 0 & 0 \\ 0 & \frac{1}{c_{2}} & 0 \\ 0 & 0 & \frac{1}{c_{3}}\end{array}\right)$ and $\left(\begin{array}{ccc}c_{1} & 0 & 0 \\ 0 & c_{2} & 0 \\ 0 & 0 & c_{3}\end{array}\right)^{n}=\left(\begin{array}{ccc}c_{1}{ }^{n} & 0 & 0 \\ 0 & c_{2}{ }^{n} & 0 \\ 0 & 0 & c_{3}{ }^{n}\end{array}\right)$ for all positive integers n ，where c_{1}, c_{2} and c_{3} are real numbers．Find $\left(A^{-1}\right)^{n}$ ．

11．Let $A=\left(\begin{array}{ccc}2 & 1 & 0 \\ -1 & 5 & 4\end{array}\right)$ ．Find $A^{T} A$ and $A A^{T}$ ．

12．Let $X=\left(\begin{array}{c}1 \\ 2 \\ -4\end{array}\right)$ ．Find $X^{T} X$ and $X X^{T}$ ．

13．It is given that A, B and C are square matrices，where $A^{2} B^{T}=C,|A|=2,|C|=3$ ．Find the value of $|B|$ ．

14．It is given that P, Q and R are 2×2 matrices，where R is invertible，$P^{T} Q^{3}=-R^{-1}, P^{2} R=I$ and $|P|=8$ ．Find the values of $|Q|$ and $|R|$ ．

15．Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ ，where $a, \quad b, \quad c$ and d are real numbers．It is given that $M\binom{-1}{-2}=\binom{-5}{-9}$ and $M\binom{-3}{-5}=\binom{-14}{-25}$ ．
（a）Find the values of a, b, c and d ．
（b）Find M^{-1} ．
（c）Find $M^{-1}\left(\begin{array}{ll}-5 & -14 \\ -9 & -25\end{array}\right)$ ．

未完待續

