進佳數學團隊－Dr．Herbert Lam 林康榮博士
 HKAL Pure Mathematics

F．Inequalities

1．Basic properties

Theorem 1

Let a, b, c be real numbers．
（i）If $a>b$ and $b>c$ ，then $a>c$ ．
（ii）If $a>b$ and $c>0$ ，then $a c>b c$ ，but if $a>b$ and $c<0$ ，then $a c<b c$ ．

Theorem 2

Let a and b be positive numbers．
Then $a>b$ if and only if $a^{2}>b^{2}$ ．

The proof of above is simple and is left to the student．

Example 1

（a）Prove the inequality $\sqrt{n+1}-\sqrt{n}<\frac{1}{2 \sqrt{n}}<\sqrt{n}-\sqrt{n-1}$ ，where $n>0$ ．
（b）Hence show that $18<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{100}}<19$ ．
（c）Show that $2 \sqrt{n}-\frac{3}{2}$ is close to $S_{n}=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}$
if n is sufficiently large．

（0）［Solution］

（a）$\sqrt{n+1}-\sqrt{n}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}$

$$
=\frac{1}{\sqrt{n+1}+\sqrt{n}} .
$$

$\because \sqrt{n+1}>\sqrt{n}$, i.e. $\sqrt{n+1}+\sqrt{n}>2 \sqrt{n}$,
$\therefore \frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{2 \sqrt{n}}$.
Hence $\sqrt{n+1}-\sqrt{n}<\frac{1}{2 \sqrt{n}}$.
Similarly, we can show

$$
\begin{aligned}
\sqrt{n}-\sqrt{n-1}= & \frac{1}{\sqrt{n}+\sqrt{n-1}} \\
\sqrt{n}+\sqrt{n-1}<2 \sqrt{n} \Rightarrow & \frac{1}{\sqrt{n}+\sqrt{n-1}}>\frac{1}{2 \sqrt{n}} \\
& \frac{1}{2 \sqrt{n}}<\sqrt{n}-\sqrt{n-1}
\end{aligned}
$$

(b) For $n=1$, we have $\sqrt{2}-1<\frac{1}{2}<1$.

But this inequality can be modified as

$$
\begin{equation*}
\sqrt{2}-1<\frac{1}{2} \leq 1-\frac{1}{2} \cdots \cdots \tag{}
\end{equation*}
$$

For $n=2,3, \cdots, 100$, we have

$$
\begin{gathered}
\sqrt{3}-\sqrt{2}<\frac{1}{2 \sqrt{2}}<\sqrt{2}-1 \\
\sqrt{4}-\sqrt{3}<\frac{1}{2 \sqrt{3}}<\sqrt{3}-\sqrt{2} \\
\vdots \quad \vdots \quad \vdots \\
\sqrt{101}-\sqrt{100}<\frac{1}{2 \sqrt{100}}<\sqrt{100}-\sqrt{99}
\end{gathered}
$$

Adding up (*) and the others corresponding to $n=2,3, \cdots, 100$, we obtain

$$
\sqrt{101}-1<\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{100}}\right)<\sqrt{100}-\frac{1}{2} .
$$

As $\sqrt{101}-1>\sqrt{100}-1=9$,
therefore we have

$$
\begin{array}{ll}
9<\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{100}}\right)<10-\frac{1}{2} \\
\text { i.e. } \quad 18<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{100}}<19 .
\end{array}
$$

(c) Similar to what we did in (b), consider the inequalities

$$
\begin{gathered}
\sqrt{2}-1<\frac{1}{2} \leq 1-\frac{1}{2} \\
\sqrt{3}-\sqrt{2}<\frac{1}{2 \sqrt{2}}<\sqrt{2}-1 \\
\vdots \\
\vdots \\
\sqrt{n+1}-\sqrt{n}<\frac{1}{2 \sqrt{n}}<\sqrt{n}-\sqrt{n-1} .
\end{gathered}
$$

Adding up these, we have

$$
\begin{gathered}
\sqrt{n+1}-1<\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}\right)<\sqrt{n}-\frac{1}{2} \\
2(\sqrt{n+1}-1)<S_{n}<2\left(\sqrt{n}-\frac{1}{2}\right) .
\end{gathered}
$$

$\because \sqrt{n+1}>\sqrt{n}$, \therefore We obtain $S_{n}>2(\sqrt{n+1}-1)>2(\sqrt{n}-1)$.
Hence, $2 \sqrt{n}-2<S_{n}<2 \sqrt{n}-1$

$$
-2<S_{n}-2 \sqrt{n}<-1
$$

$$
-\frac{1}{2}<S_{n}-2 \sqrt{n}+\frac{3}{2}<\frac{1}{2}
$$

$$
\left|S_{n}-\left(2 \sqrt{n}-\frac{3}{2}\right)\right|<\frac{1}{2}
$$

This inequality implies that S_{n} is close to $2 \sqrt{n}-\frac{3}{2}$ as n becomes large. For example, when $n=1,000,000, S_{n}$ deviates from 1998.5 in less than $\frac{1}{2}$.

2. Well known inequalities

The triangle inequality, Cauchy-Schwarz's inequality and the inequality concerning arithmetic mean and geometric mean are presented in the following examples.

Example 2

Show that $|a+b| \leq|a|+|b|$.

(1) [Solution]

Starting with $a b \leq|a b|$,
we have $a^{2}+2 a b+b^{2} \leq a^{2}+2|a b|+b^{2}$.
Since $a^{2}=|a|^{2}, \quad b^{2}=|b|^{2},|a b|=|a| \cdot|b|$,
the above inequality can be written as

$$
\begin{aligned}
& a^{2}+2 a b+b^{2} \leq|a|^{2}+2|a| \cdot|b|+|b|^{2} \\
& \quad(a+b)^{2} \leq(|a|+|b|)^{2} . \\
& \therefore \quad|a+b| \leq|a|+|b| .
\end{aligned}
$$

Equality holds if $a=b$.

Note: This is known as the triangle inequality, and is also valid when a and b are complex numbers or vectors. This will also be discussed in Chapter 4. The geometric interpretations for these two cases are the same, stated as follows.

The sum of any two sides of a triangle is longer than the third one, e.g. $P Q+Q R>P R$ in Figure 1.

Figure 1

Example 3

Show that $\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right) \cdot\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}\right)$, where a_{i} 's and b_{i} 's are real numbers.

This is known as the Cauchy-Schwarz's inequality.

(0) [Solution]

Consider $a_{i} x+b_{i}, \quad i=1,2, \cdots, n$.
We have $\sum_{i=1}^{n}\left(a_{i} x+b_{i}\right)^{2} \geq 0$, for all $x \in \mathbb{R}$.

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(a_{i}^{2} x^{2}+2 a_{i} b_{i} x+b_{i}^{2}\right) \geq 0 \\
\therefore & \left(\sum_{i=1}^{n} a_{i}^{2}\right) x^{2}+2\left(\sum_{i=1}^{n} a_{i} b_{i}\right) x+\sum_{i=1}^{n} b_{i}^{2} \geq 0 .
\end{aligned}
$$

Let $A=\sum_{i=1}^{n} a_{i}^{2}, \quad B=\sum_{i=1}^{n} a_{i} b_{i}, \quad C=\sum_{i=1}^{n} b_{i}^{2}$.
Then $A x^{2}+2 B x+C \geq 0$.
The required inequality is trivial when $A=0$. Suppose $A>0$.
For the quadratic expression to be non-negative

$$
\begin{gathered}
\Delta=(2 B)^{2}-4 A \cdot C \leq 0 \\
B^{2} \leq A C \\
\text { i.e. }\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) .
\end{gathered}
$$

Geometrically, the graph of $A x^{2}+2 B x+C$ is above the x-axis .
The equality holds iff $\sum_{i=1}^{n}\left(a_{i} x+b_{i}\right)^{2}=0$ for some nonzero $x \in \mathbb{R}$.
Thus $a_{i} x+b_{i}=0, \quad i=1,2, \cdots, n$, i.e. $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}\left(=-\frac{1}{x}\right)$.

Example 4

Given n positive numbers $a_{1}, a_{2}, \cdots, a_{n}$, show that the arithmetic mean (A.M.) is greater than or equal to the geometric mean (G.M.), i.e.

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}
$$

(0) [Solution]

Proof of this well known inequality requires using the property of the natural logarithmic function, $\ln \left(x_{1} x_{2} \cdots x_{n}\right)=\ln x_{1}+\ln x_{2}+\cdots+\ln x_{n}$, where x_{i}^{\prime} 's are positive.

First, we have to show when $x>0$,

$$
\begin{equation*}
\ln x \leq x-1 \cdots \cdots(\tag{*}
\end{equation*}
$$

From Figure 2, we observe that the curve of $y=\ln x$ is below the line $y=x-1$, and they touch each other at $x=1$.

On the other hand, we can consider the function $f(x)=\ln x-x+1$.
Since $f^{\prime}(x)=\frac{1}{x}-1=0 \Rightarrow x=1$,
and $f^{\prime \prime}(x)=-\frac{1}{x^{2}} \Rightarrow f^{\prime \prime}(x) \leq 0$,
the curve of $f(x)$ attains a local maximum at $x=1$ and the maximum value is zero. Hence, when $x>0, f(x) \leq 0$, i.e. $\ln x \leq x-1$.

Second, let $A=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}, \quad a_{i}$'s >0.
By (*), we have $\ln \left(\frac{a_{1}}{A}\right) \leq \frac{a_{1}}{A}-1$,

$$
\begin{gathered}
\ln \left(\frac{a_{2}}{A}\right) \leq \frac{a_{2}}{A}-1, \\
\vdots \\
\ln \left(\frac{a_{n}}{A}\right) \leq \frac{a_{n}}{A}-1 .
\end{gathered}
$$

Adding up above,

$$
\begin{gathered}
\ln \left(\frac{a_{1}}{A}\right)+\ln \left(\frac{a_{2}}{A}\right)+\cdots \ln \left(\frac{a_{n}}{A}\right) \leq \frac{a_{1}}{A}+\frac{a_{2}}{A}+\cdots+\frac{a_{n}}{A}-n \\
\ln \left(\frac{a_{1} a_{2} \cdots a_{n}}{A^{n}}\right) \leq \frac{a_{1}+a_{2}+\cdots+a_{n}}{A}-n .
\end{gathered}
$$

Note that RHS of the inequality $=n-n=0$,

$$
\text { i.e. } \ln \left(\frac{a_{1} a_{2} \cdots a_{n}}{A^{n}}\right) \leq 0 \Rightarrow \frac{a_{1} a_{2} \cdots a_{n}}{A^{n}} \leq 1
$$

$$
\begin{aligned}
& a_{1} a_{2} \cdots a_{n} \leq\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)^{n} \\
& \frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \cdots a_{n}} .
\end{aligned}
$$

Equality holds if $a_{1}=a_{2}=\cdots=a_{n}$.

An alternative method of proving this inequality is to use the following inequality (${ }^{* *}$).
"If $x_{1} x_{2} \cdots x_{n}=1$, then $x_{1}+x_{2}+\cdots+x_{n} \geq n \cdots(* *)$ "
Let $x_{i}=\frac{a_{i}}{\sqrt[n]{a_{1} a_{2} \cdots a_{n}}}$ and we have $\prod_{i=1}^{n} x_{i}=1$.

Then $\sum_{i=1}^{n} x_{i} \geq n \Rightarrow \frac{a_{1}+a_{2}+\cdots+a_{n}}{\sqrt[n]{a_{1} a_{2} \cdots a_{n}}} \geq n$,

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \cdots a_{n}} .
$$

Note:

(i) (**) can be proved by induction on n.
(See Example 4 of Section A, Chapter 3, on P. 107)
Otherwise, we can simply duplicate the above proof using the natural log function.

$$
\begin{aligned}
& \because \quad \ln x_{i} \leq x_{i}-1, \\
& \therefore \quad \sum_{i=1}^{n} \ln x_{i} \leq \sum_{i=1}^{n}\left(x_{i}-1\right) \Rightarrow \ln \prod_{i=1}^{n} x_{i} \leq \sum_{i=1}^{n} x_{i}-n .
\end{aligned}
$$

Since $x_{1} x_{2} \cdots x_{n}=1$, LHS $=0$.
Hence $\sum_{i=1}^{n} x_{i} \geq n$.
(ii) A.M. \geq G.M. is frequently used to prove inequalities, and is considered more efficient than using algebraic manipulations in certain occasions. (see Example 6 on P.92)

Example 5

(a) Show that the sum of a positive number and its reciprocal is always greater than or equal to 2 , i.e. $x+\frac{1}{x} \geq 2$ for $x>0$.
(b) Let p and q be positive numbers.

Show that $p^{2} q^{2}+p^{2}+q^{2}+1 \geq 4 p q$.

(1) [Solution]

(a) It immediately follows from A.M. \geq G.M. as

$$
\frac{x+\frac{1}{x}}{2} \geq \sqrt{x \cdot \frac{1}{x}} \Rightarrow x+\frac{1}{x} \geq 2 .
$$

Alternatively, $x+\frac{1}{x}-2=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} \geq 0, \quad \therefore \quad x+\frac{1}{x} \geq 2$.
(b) It is equivalent to show $\frac{p^{2} q^{2}+p^{2}+q^{2}+1}{p q} \geq 4$.

By (a), $\quad p q+\frac{1}{p q} \geq 2$ and $\frac{p}{q}+\frac{q}{p} \geq 2$
$\therefore \quad p q+\frac{1}{p q}+\frac{p}{q}+\frac{q}{p} \geq 4$, i.e. $\frac{p^{2} q^{2}+p^{2}+q^{2}+1}{p q} \geq 4$.

Example 6

Let a, b, c be distinct positive numbers.
(a) Show that $a^{3}+b^{3}>a^{2} b+a b^{2}$.
(b) Show that $a^{2} b+b^{2} a+b^{2} c+c^{2} b+c^{2} a+a^{2} c>6 a b c$.
(c) Hence, show that $a^{3}+b^{3}+c^{3}>3 a b c$.

(1) [Solution]

(a) $(a+b)(a-b)^{2}>0 \quad(\because a+b>0)$

$$
a^{3}+b^{3}-a^{2} b-a b^{2}>0, \quad \therefore a^{3}+b^{3}>a^{2} b+a b^{2} .
$$

(b) $(a-b)^{2}>0$,
$a^{2}+b^{2}>2 a b$,
$a^{2} c+b^{2} c>2 a b c$.
Similarly $b^{2} a+c^{2} a>2 a b c$,

$$
c^{2} b+a^{2} b>2 a b c .
$$

$\therefore a^{2} b+b^{2} a+b^{2} c+c^{2} b+c^{2} a+a^{2} c>6 a b c$.
(c) From (a) $a^{3}+b^{3}>a^{2} b+a b^{2}$.

Similarly, $b^{3}+c^{3}>b^{2} c+b c^{2}$,

$$
c^{3}+a^{3}>c^{2} a+c a^{2} .
$$

Then $2\left(a^{3}+b^{3}+c^{3}\right)>a^{2} b+a b^{2}+b^{2} c+b c^{2}+c^{2} a+c a^{2}$.
From (b) $a^{2} b+b^{2} a+b^{2} c+c^{2} b+c^{2} a+a^{2} c>6 a b c$.
This implies $2\left(a^{3}+b^{3}+c^{3}\right)>6 a b c$,

$$
a^{3}+b^{3}+c^{3}>3 a b c .
$$

Note: This inequality can be proved in a different way. Since a, b and c are distinct positive numbers, so are a^{3}, b^{3} and c^{3}. Then $\frac{a^{3}+b^{3}+c^{3}}{3}>\sqrt[3]{a^{3} b^{3} c^{3}} \quad$ (A.M. $>$ G.M.)
implies $a^{3}+b^{3}+c^{3}>3 a b c$.

Example 7

Let a, b and c be positive numbers.
Using A.M. \geq G.M., show that $(1+a)(1+b)(1+c) \geq(1+\sqrt[3]{a b c})^{3}$.
Under what condition on a, b and c will the equality hold?

(0) [Solution]

Using A.M. \geq G.M.,

$$
\frac{1}{3}(a+b+c) \geq \sqrt[3]{a b c} \text { and } \frac{1}{3}(a b+b c+c a) \geq \sqrt[3]{(a b)(b c)(c a)}=\sqrt[3]{(a b c)^{2}}
$$

Hence, $(1+a)(1+b)(1+c)-(1+\sqrt[3]{a b c})^{3}$

$$
\begin{aligned}
& =[1+(a+b+c)+(a b+b c+c a)+a b c]-\left[1+3 \sqrt[3]{a b c}+3 \sqrt[3]{(a b c)^{2}}+a b c\right] \\
& =[(a+b+c)-3 \sqrt[3]{a b c}]+[(a b+b c+c a)-3 \sqrt[3]{(a b)(b c)(c a)}] \geq 0
\end{aligned}
$$

Equality holds if and only if

$$
\begin{aligned}
& \frac{1}{3}(a+b+c)=\sqrt[3]{a b c} \text { and } \frac{1}{3}(a b+b c+c a)=\sqrt[3]{(a b)(b c)(c a)} \\
& \therefore a=b=c \text { and } a b=b c=c a, \text { i.e. } a=b=c .
\end{aligned}
$$

3. Inequalities involving polynomials

(a) Roots of a polynomial

Suppose we are able to find the roots of the polynomial equation
$f(x)=0$ \qquad
Then $f(x)<0$ \& $f(x)>0$ can be solved immediately. Consider the graph of $f(x)$ shown in Figure 3. It can be seen when $x_{1} \leq x \leq x_{2}$ or $x \geq x_{3}$, then $f(x) \geq 0$, and when $x \leq x_{1}$ or $x_{2} \leq x \leq x_{3}$, then $f(x) \leq 0$.

Figure 3
(b) Extrema of a polynomial

By finding the maximum and minimum point of a polynomial, we are able to show $f(x) \geq k_{1}$ or $f(x) \leq k_{2}$ for x in some specified intervals.
This can be visualized by considering the local minimum $P(a, b)$ and local maximum $Q(c, d)$ in Figure 3.

Example 8

Solve $\left|x^{2}-3\right|<|x+1|$.

(1) [Solution]

Squaring both sides,

$$
\left(x^{2}-3\right)^{2}<(x+1)^{2} .
$$

Solving, $\left(x^{2}-3\right)^{2}-(x+1)^{2}<0$

$$
\begin{aligned}
& {\left[\left(x^{2}-3\right)+(x+1)\right]\left[\left(x^{2}-3\right)-(x+1)\right]<0} \\
& \left(x^{2}+x-2\right)\left(x^{2}-x-4\right)<0 \cdots \cdots(*)
\end{aligned}
$$

The roots of the biquadratic equation

$$
\left(x^{2}+x-2\right)\left(x^{2}-x-4\right)=0
$$

are found by solving two quadratic equations,

$$
\begin{array}{ll}
x^{2}+x-2=0, & x^{2}-x-4=0 \\
x=-2,1, & x=\frac{1 \pm \sqrt{17}}{2} .
\end{array}
$$

Therefore, the graph of $f(x)=\left(x^{2}+x-2\right)\left(x^{2}-x-4\right)$ is sketched as follows

Figure 4
Observe that inequality (*) is satisfied
when $-2<x<\frac{1-\sqrt{17}}{2}$ or $1<x<\frac{1+\sqrt{17}}{2}$.

Example 9

Show that $x^{4}-8 x^{3}+22 x^{2}-24 x+8 \leq 0$ when $1 \leq x \leq 3$.

(1) [Solution]

Let $y=f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x+8$.
Differentiating $f(x)$,

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-24 x^{2}+44 x-24 \\
& =4\left(x^{3}-6 x^{2}+11 x-6\right)
\end{aligned}
$$

By factorization,

$$
\begin{aligned}
x^{3}-6 x^{2}+11 x-6 & =(x-1)\left(x^{2}-5 x+6\right) \\
& =(x-1)(x-2)(x-3)
\end{aligned}
$$

Putting $\quad f^{\prime}(x)=0$, we obtain the turning points $x=1,2,3$.
Correspondingly, $y=-1,0,-1$.

$$
f^{\prime \prime}(x)=4\left(3 x^{2}-12 x+11\right)
$$

Then $\quad f^{\prime \prime}(1)=4(3-12+11)>0 \quad \Rightarrow$ local minimum at $x=1$.
$f^{\prime \prime}(2)=4(3 \times 4-12 \times 4+11)<0 \Rightarrow$ local maximum at $x=2$.
$f^{\prime \prime}(3)=4(3 \times 9-12 \times 3+11)>0 \Rightarrow$ local minimum at $x=3$.
Hence, we can see the graph of $f(x)$ is below the x-axis in $[1,3]$, i.e. $x^{4}-8 x^{3}+22 x^{2}-24 x+8 \leq 0$, when $1 \leq x \leq 3$.

Example 10

Let $x \geq-1$ and $0<\alpha<1$.
(a) Prove that $(1+x)^{\alpha} \leq 1+\alpha x$.
(b) Hence, show that for positive numbers $p \& q$,
$p^{\alpha} q^{1-\alpha} \leq \alpha p+(1-\alpha) q$.

(1) [Solution]

(a) Suppose α is rational. Then $0<\alpha<1$ indicates $\alpha=\frac{p}{q}$ where $p \& q$ are positive integers and $p<q$.
Thus, $(1+x)^{\alpha}=(1+x)^{\frac{p}{q}}=\sqrt[q]{(1+x)^{p}}$

$$
\begin{aligned}
& =\underbrace{\sqrt[q]{(1+x)(1+x) \cdots(1+x) \cdot \underbrace{1 \cdot 1 \cdots 1}_{(q-p) \text { terms }}}}_{p \text { terms }} \\
\leq & \frac{(1+x)+(1+x)+\cdots+(1+x)+1+1 \cdots+1}{q} \quad(\because \text { G.M. } \leq \text { A.M. }) \\
& =\frac{p(1+x)+(q-p)}{q}=\frac{p x+q}{q} \\
& =1+\frac{p}{q} x=1+\alpha x .
\end{aligned}
$$

By the way, the equality holds when $x=0$.
For the case of α being irrational, we use a sequence of rational numbers $\left\{r_{n}\right\}$ in the interval $(0,1)$, which converges to α,

$$
\text { i.e. } \lim _{n \rightarrow \infty} r_{n}=\alpha \text {. }
$$

Since $(1+x)^{r_{n}} \leq 1+r_{n} x, \quad 0<r_{n}<1$, we obtain

$$
(1+x)^{\alpha}=\lim _{n \rightarrow \infty}(1+x)^{r_{n}} \leq \lim _{n \rightarrow \infty}\left(1+r_{n} x\right)=1+\alpha x .
$$

Obviously, equality holds when $x=0$.

An alternative method is to use differential calculus.
Let $\quad f(x)=(1+x)^{\alpha}-\alpha x-1$.
Differentiating and putting the first derivative equal to zero,

$$
f^{\prime}(x)=\alpha(1+x)^{\alpha-1}-\alpha=0 \Rightarrow x=0 .
$$

Moreover, $f "(x)=\alpha(\alpha-1)(1+x)^{\alpha-2}, f "(0)=\alpha(\alpha-1)<0(\because 0<\alpha<1)$
$\Rightarrow f(x)$ has a local maximum at $x=0$.
Hence $f(x) \leq f(0) \quad \forall x$

$$
\begin{aligned}
& (1+x)^{\alpha}-\alpha x-1 \leq 0, \quad[\because f(0)=0] \\
& (1+x)^{\alpha} \leq 1+\alpha x .
\end{aligned}
$$

(b) Note that $\frac{p}{q}$ can be expressed as $1+x$ where $x \geq-1$.

$$
\text { Then } \frac{p}{q}=1+x \Rightarrow x=\frac{p}{q}-1 .
$$

By (a), $\left(\frac{p}{q}\right)^{\alpha} \leq 1+\alpha\left(\frac{p}{q}-1\right)$.
Multiplying both sides by q,

$$
\begin{aligned}
& \left(\frac{p}{q}\right)^{\alpha} \cdot q \leq q+\alpha p-\alpha q \\
& p^{\alpha} q^{1-\alpha} \leq \alpha p+(1-\alpha) q
\end{aligned}
$$

