香港考試及評核局
 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
 香港中學文憑考試
 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION
 練習卷
 PRACTICE PAPER

本評卷參考乃香港考試及評核局專爲本科練習卷而編舄，供教師參考之用。教師應提醒學生，不應將評卷參考視爲標準答案，硬背死記，活剥生吞。這種學習態度，既無助學生改善學習，學懂應對及解難，亦有違考試着重理解能力與運用技巧之旨。因此，本局籲請各位教師通力合作，堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for teachers＇reference．Teachers should remind their students NOT to regard this marking scheme as a set of model answers．Our examinations emphasise the testing of understanding，the practical application of knowledge and the use of processing skills．Hence the use of model answers，or anything else which encourages rote memorisation，will not help students to improve their learning nor develop their abilities in addressing and solving problems．The Authority is counting on the co－operation of teachers in this regard．

Hong Kong Diploma of Secondary Education Examination Mathematics Compulsory Part Paper 1

General Marking Instructions

1．This marking scheme is the preliminary version before the normal standardisation process and some revisions may be necessary after actual samples of performance have been collected and scrutinised by the HKEAA． Teachers are strongly advised to conduct their own internal standardisation procedures before applying the marking schemes．After standardisation，teachers should adhere to the marking scheme to ensure a uniform standard of marking within the school．

2．It is very important that all teachers should adhere as closely as possible to the marking scheme．In many cases，however，students will have obtained a correct answer by an alternative method not specified in the marking scheme．In general，a correct answer merits all the marks allocated to that part，unless a particular method has been specified in the question．Teachers should be patient in marking alternative solutions not specified in the marking scheme．

3．In the marking scheme，marks are classified into the following three categories：

＇M＇marks	awarded for correct methods being used； ＇A＇marks
Marks without＇M＇or＇A＇	awarded for the accuracy of the answers； awarded for correctly completing a proof or arriving at an answer given in a question．

In a question consisting of several parts each depending on the previous parts，＇ M ＇marks should be awarded to steps or methods correctly deduced from previous answers，even if these answers are erroneous．However， ＇A＇marks for the corresponding answers should NOT be awarded（unless otherwise specified）．

4．For the convenience of teachers，the marking scheme was written as detailed as possible．However，it is still likely that students would not present their solution in the same explicit manner，e．g．some steps would either be omitted or stated implicitly．In such cases，teachers should exercise their discretion in marking students＇ work．In general，marks for a certain step should be awarded if students＇solution indicated that the relevant concept／technique had been used．

5．Use of notation different from those in the marking scheme should not be penalized．
6．In marking students＇work，the benefit of doubt should be given in the students＇favour．
7．Marks may be deducted for wrong units (u) or poor presentation $(p p)$ ．
a．The symbol（4－1 should be used to denote 1 mark deducted for u ．At most deduct 1 mark for u in each of Section $\mathrm{A}(1)$ and Section $\mathrm{A}(2)$ ．Do not deduct any marks for u in Section B．
b．The symbol $p p-1$ should be used to denote 1 mark deducted for $p p$ ．At most deduct 1 mark for $p p$ in each of Section A（1）and Section A（2）．Do not deduct any marks for $p p$ in Section B．
c．At most deduct 1 mark in each of Section A（1）and Section A（2）．
d．In any case，do not deduct any marks in those steps where students could not score any marks．
8．In the marking scheme，＇r．t．＇stands for＇accepting answers which can be rounded off to＇and＇f．t．＇stands for ＇follow through＇．Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles．All fractional answers must be simplified．

只限教師參閲

只限教師參閲

| Solution | Marks | Remarks |
| :--- | :--- | :---: | :---: |
| 4．Let $\$ x$ be the marked price of the chair．
 $x(1-20 \%)=360(1+30 \%)$
 $x=\frac{360(1.3)}{0.8}$
 $x=585$
 Thus，the marked price of the chair is $\$ 585$. | $1 \mathrm{M}+1 \mathrm{M}+1 \mathrm{~A}$ | $\mathrm{pp}-1$ for undefined symbol
 1 M for $x(1-20 \%)$
 +1 M for $360(1+30 \%)$ |
| The marked price of the chair
 $=\frac{360(1+30 \%)}{1-20 \%}$
 $=\$ 585$ | 1 A | $\mathrm{u}-1$ for missing unit |

5．Let x litres and y litres be the capacities of a bottle and a cup respectively．
$\left\{\begin{array}{l}\frac{x}{y}=\frac{4}{3} \\ 7 x+9 y=11\end{array}\right.$
So，we have $7 x+9\left(\frac{3 x}{4}\right)=11$ ．
Solving，we have $x=\frac{4}{5}$ ．
Thus，the capacity of a bottle is $\frac{4}{5}$ litre．
Let x litres be the capacity of a bottle．
$7 x+9\left(\frac{3 x}{4}\right)=11$
Solving，we have $x=\frac{4}{5}$ ．
Thus，the capacity of a bottle is $\frac{4}{5}$ litre．
$\mathrm{pp}-1$ for undefined symbol
for getting a linear equation in x or y only
0.8
$\mathrm{u}-1$ for missing unit
$\mathrm{pp}-1$ for undefined symbol
1 A for $y=\frac{3 x}{4}+1 \mathrm{M}$ for $7 x+9 y=11$
0.8
$\mathrm{u}-1$ for missing unit

只限教師參閲

只限教師參閲

$$
\begin{aligned}
& \mathrm{f}(x) \\
= & (x-1)\left(6 x^{2}+17 x-2\right)+4 \\
= & 6 x^{3}+11 x^{2}-19 x+6 \\
& \mathrm{f}(-3) \\
= & 6(-3)^{3}+11(-3)^{2}-19(-3)+6 \\
= & 0
\end{aligned}
$$

10．（a）Note that when $\mathrm{f}(x)$ is divided by $x-1$ ，the remainder is 4 ．
（b）$\quad \mathrm{f}(x)$

$$
\begin{aligned}
& =(x+3)\left(6 x^{2}-7 x+2\right) \\
& =(x+3)(2 x-1)(3 x-2)
\end{aligned}
$$

11．（a）Let $C=a+b x^{2}$ where a and b are non－zero constants．
So，we have $a+\left(20^{2}\right) b=42$ and $a+\left(120^{2}\right) b=112$ ．
Solving，we have $a=40$ and $b=\frac{1}{200}$ ．
The required cost
$=40+\frac{1}{200}\left(50^{2}\right)$
$=\$ 52.5$
（b） $40+\frac{1}{200} x^{2}=58$
$x^{2}=3600$
$x=60$
Thus，the required length is 60 cm ．

Marks \quad Remarks
can be absorbed for both correct
for $(x-1)\left(6 x^{2}+17 x-2\right)+r$

1 M for $(x+3)\left(a x^{2}+b x+c\right)$
for either substitution
$u-1$ for missing unit
$\mathrm{u}-1$ for having unit

Solution	Marks	Remarks
13．（a）Let n be the number of students in the group． $\begin{aligned} & \frac{6}{n}=\frac{3}{20} \\ & n=40 \end{aligned}$	1M	pp－1 for undefined symbol
k		
$=40-6-11-5-10$	1M	
$=8$	$\begin{gathered} 1 \mathrm{~A} \\ ---------(3) \end{gathered}$	
（b）（i）The required angle $=\frac{5}{40}\left(360^{\circ}\right)$	1M	
$=45^{\circ}$	1A	$\mathrm{u}-1$ for missing unit
（ii）Let m be the number of new students． Assume that the angle of the sector representing that the most favourite fruit is orange will be doubled．		$\mathrm{pp}-1$ for undefined symbol
$\begin{aligned} & \frac{5+m}{40+m}=\frac{(45)(2)}{360} \\ & 20+4 m=40+m \\ & 3 m=20 \end{aligned}$	1 M	for considering $\frac{5+m}{n+m}$
Since 20 is not a multiple of 3 ，the angle of the sector representing that the most favourite fruit is orange will not be doubled．	$\begin{gathered} \text { 1A } \\ \hline-----(4) \end{gathered}$	f．t．

只限教師參閲

只限教師參関

Solution	Marks	Remarks
16．（a）The required probability $\begin{aligned} & =\frac{C_{4}^{18}}{C_{4}^{30}} \\ & =\frac{68}{609} \end{aligned}$	$1 \mathrm{M}$ $1 \mathrm{~A}$	for numerator or denominator $\text { r.t. } 0.112$
$\begin{aligned} & \quad \text { The required probability } \\ & =\left(\frac{18}{30}\right)\left(\frac{17}{29}\right)\left(\frac{16}{28}\right)\left(\frac{15}{27}\right) \\ & =\frac{68}{609} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { for }\left(\frac{r}{n}\right)\left(\frac{r-1}{n-1}\right)\left(\frac{r-2}{n-2}\right)\left(\frac{r-3}{n-3}\right), r<n \\ & \text { r.t. } 0.112 \end{aligned}$
（b）The required probability $\begin{aligned} & =1-\frac{68}{609}-\frac{C_{4}^{12}}{C_{4}^{30}} \\ & =\frac{530}{609} \end{aligned}$	－－－－－－－－－－（2） 1M 1A	for $1-(a)-p_{1}$ r．t． 0.870
$=\begin{aligned} & \text { The required probability } \\ & =\frac{C_{1}^{18} C_{3}^{12}+C_{2}^{18} C_{2}^{12}+C_{3}^{18} C_{1}^{12}}{C_{4}^{30}} \\ & =\frac{530}{609} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	for considering 3 cases $\text { r.t. } 0.870$
$\begin{aligned} & \quad \text { The required probability } \\ & =1-\frac{68}{609}-\left(\frac{12}{30}\right)\left(\frac{11}{29}\right)\left(\frac{10}{28}\right)\left(\frac{9}{27}\right) \\ & =\frac{530}{609} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { for } 1-(a)-p_{2} \\ & \text { r.t. } 0.870 \end{aligned}$
$\begin{aligned} & \quad \text { The required probability } \\ & =4\left(\frac{18}{30}\right)\left(\frac{12}{29}\right)\left(\frac{11}{28}\right)\left(\frac{10}{27}\right)+6\left(\frac{18}{30}\right)\left(\frac{17}{29}\right)\left(\frac{12}{28}\right)\left(\frac{11}{27}\right)+4\left(\frac{18}{30}\right)\left(\frac{17}{29}\right)\left(\frac{16}{28}\right)\left(\frac{12}{27}\right) \\ & = \\ & \frac{530}{609} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	for considering 14 cases $\text { r.t. } 0.870$

只限教師參閲

$$
\text { 17. (a) } \begin{aligned}
& \frac{1}{1+2 i} \\
= & \left(\frac{1}{1+2 i}\right)\left(\frac{1-2 i}{1-2 i}\right) \\
= & \frac{1}{5}-\frac{2}{5} i
\end{aligned}
$$

（b）（i）Note that $\frac{10}{1+2 i}=2-4 i$ and $\frac{10}{1-2 i}=2+4 i$ ．
The sum of roots

$$
\begin{aligned}
& =\frac{10}{1+2 i}+\frac{10}{1-2 i} \\
& =(2-4 i)+(2+4 i) \\
& =4
\end{aligned}
$$

The product of roots
$=\left(\frac{10}{1+2 i}\right)\left(\frac{10}{1-2 i}\right)$
$=20$
Thus，we have $p=-4$ and $q=20$ ．
（ii）When the equation $x^{2}-4 x+20=r$ has real roots，we have $\Delta \geq 0$ ． So，we have $(-4)^{2}-4(1)(20-r) \geq 0$ ．
Thus，we have $r \geq 16$ ．

只限教師參閲

By sine formula，
$\frac{\sin \angle A B C}{A C}=\frac{\sin \angle A C B}{A B}$
$\frac{\sin \angle A B C}{20}=\frac{\sin 60^{\circ}}{4 \sqrt{19}}$
$\angle A B C \approx 83.41322445^{\circ}$
Let Q be the foot of the perpendicular from C to $A B$ ．
$\sin \angle A B C=\frac{C Q}{B C}$
$C Q \approx 12 \sin 83.41322445^{\circ}$
$C Q \approx 11.92079121 \mathrm{~cm}$
Since $\triangle A B C \cong \triangle A B D$ ，the required angle is $\angle C Q D$ ．
$\sin \frac{\angle C Q D}{2}=\frac{\frac{1}{2} C D}{C Q}$
$\sin \frac{\angle C Q D}{2} \approx 0.587209345$
$\angle C Q D \approx 71.91844786^{\circ}$
$\angle C Q D \approx 71.9^{\circ}$
Thus，the angle between the plane $A B C$ and the plane $A B D$ is 71.9° ．

只限教皈參開

Solution	Marks	Remarks
By sine formula， $\begin{aligned} & \frac{\sin \angle B A C}{B C}=\frac{\sin \angle A C B}{A B} \\ & \frac{\sin \angle B A C}{12}=\frac{\sin 60^{\circ}}{4 \sqrt{19}} \\ & \angle B A C \approx 36.58677555^{\circ} \end{aligned}$ Let Q be the foot of the perpendicular from C to $A B$ ． $\begin{aligned} & \sin \angle B A C=\frac{C Q}{A C} \\ & C Q \approx 20 \sin 36.58677555^{\circ} \\ & C Q \approx 11.92079121 \mathrm{~cm} \end{aligned}$ By symmetry，we have $D Q=C Q$ ． $D Q \approx 11.92079121 \mathrm{~cm}$ Since $\triangle A B C \cong \triangle A B D$ ，the required angle is $\angle C Q D$ ． $\begin{aligned} & C D^{2}=C Q^{2}+D Q^{2}-2(C Q)(D Q) \cos \angle C Q D \\ & 14^{2} \approx 11.92079121^{2}+11.92079121^{2}-2(11.92079121)(11.92079121) \cos \angle C Q D \\ & \angle C Q D \approx 71.91844786^{\circ} \\ & \angle C Q D \approx 71.9^{\circ} \end{aligned}$ Thus，the angle between the plane $A B C$ and the plane $A B D$ is 71.9° ．	1M	for identifying the angle r．t． 71.9°
$\begin{aligned} & \text { The area of } \triangle A B C \\ = & \frac{1}{2}(A C)(B C) \sin \angle A C B \\ = & \frac{1}{2}(20)(12) \sin 60^{\circ} \\ = & 60 \sqrt{3} \mathrm{~cm}^{2} \end{aligned}$ Let Q be the foot of the perpendicular from C to $A B$ ． $\begin{aligned} & \frac{1}{2}(A B)(C Q)=60 \sqrt{3} \\ & \frac{1}{2}(4 \sqrt{19})(C Q)=60 \sqrt{3} \\ & C Q \approx 11.92079121 \mathrm{~cm} \end{aligned}$ Since $\triangle A B C \cong \triangle A B D$ ，the required angle is $\angle C Q D$ ． $\begin{aligned} & \sin \frac{\angle C Q D}{2}=\frac{\frac{1}{2} C D}{C Q} \\ & \sin \frac{\angle C Q D}{2} \approx 0.587209345 \\ & \angle C Q D \approx 71.91844786^{\circ} \\ & \angle C Q D \approx 71.9^{\circ} \end{aligned}$ Thus，the angle between the plane $A B C$ and the plane $A B D$ is 71.9° ．	1 M	for identifying the angle r．t． 71.9°
（c）Let Q be the foot of the perpendicular from C to $A B$ ． Note that $\sin \frac{\angle C P D}{2}=\frac{\frac{1}{2} C D}{C P}$ ． Since $C P \geq C Q$ ，we have $\angle C P D \leq \angle C Q D$ ． Thus，$\angle C P D$ increases as P moves from A to Q and decreases as P moves from Q to B ． PP－DSE－MATH－CP 1－15	－－－－－－（4） 1 M 1 A $----(2)$	f．t．

只限教師參閲

只限教師參閲

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

PRACTICE PAPER

MATHEMATICS COMPULSORY PART PAPER 2

Question No．	Key	Question No．	Key
1.	A	31.	D
2.	C	32.	B
3.	A	33.	C
4.	D	34.	D
5.	D	35.	A
6.	C	36.	B
7.	B	37.	C
8.	D	38.	A
9.	A	39.	C
10.	B	40.	B
11.	D		A
12.	A	41.	B
13.	A	42.	D
14.	B	43.	C
15.	44.		

17.	C
18．	A
19.	D
20.	C

21．	C
22.	B
23.	C
24.	D
25.	B
26.	D
27.	B
28.	A
29.	B
30.	C

