PP-DSE MATH CP

PAPER 2

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

PRACTICE PAPER MATHEMATICS Compulsory Part PAPER 2

(11/4 hours)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first stick a barcode label and insert the information required in the spaces provided. No extra time will be given for sticking on the barcode label after the 'Time is up' announcement.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF **PAPER**' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS.** You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2012 Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

 $1. \qquad x^3(2x+x) =$

A.
$$3x^4$$
.
B. $2x^5$.
C. $3x^5$.
D. $2x^6$.

2. If
$$3a+1=3(b-2)$$
, then $b=$

A. a+1. B. a+3. C. $a+\frac{7}{3}$. D. $a-\frac{5}{3}$.

$$3. \qquad p^2 - q^2 - p - q =$$

- A. (p+q)(p-q-1).
- B. (p+q)(p+q-1).
- C. (p-q)(p-q+1).
- D. (p-q)(p+q-1).

- 4. Let *m* and *n* be constants. If $m(x-3)^2 + n(x+1)^2 \equiv x^2 38x + 41$, then m = 1
 - A. -4.
 B. -1.
 C. 3.
 D. 5.

5. Let $f(x) = x^4 - x^3 + x^2 - x + 1$. When f(x) is divided by x + 2, the remainder is

A. -2.
B. 0.
C. 11.
D. 31.

6. Let k be a constant. If the quadratic equation $3x^2 + 2kx - k = 0$ has equal roots, then k =

- A. -3.
 B. 3.
 C. -3 or 0.
 D. 0 or 3.
- 7. In the figure, the x-intercepts of the straight lines L_1 and L_2 are 5 while the y-intercepts of the straight lines L_2 and L_3 are 3. Which of the following are true?
 - I. The equation of L_1 is x = 5. II. The slope of L_2 is $\frac{3}{5}$.
 - III. The point (2,3) lies on L_3 .
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 8. The figure shows the graph of $y = ax^2 2x + b$, where *a* and *b* are constants. Which of the following is/are true?
 - I. a > 0
 - II. b < 0
 - III. ab < 1
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- 9. The solution of 4x > x-3 or 3-x < x+7 is
 - A. x > -2.
 - B. x < -2.
 - C. x > -1.
 - D. x < -2 or x > -1.
- 10. John buys a vase for \$1600. He then sells the vase to Susan at a profit of 20%. At what price should Susan sell the vase in order to have a profit of 20%?
 - A. \$2240
 - B. \$2304
 - C. \$2400
 - D. \$2500
- 11. If the circumference of a circle is increased by 40%, then the area of the circle is increased by
 - A. 18%.
 - B. 20%.
 - C. 40%.
 - D. 96%.

- 12. Let α and β be non-zero constants. If $(\alpha + \beta) : (3\alpha \beta) = 7:3$, then $\alpha : \beta =$
 - A. 5:9.
 - B. 9:5.
 - C. 19:29.
 - D. 29:19.

13. If z varies directly as x and inversely as y^2 , which of the following must be constant?

A. $\frac{x}{y^2 z}$ B. $\frac{z}{xy^2}$ C. $\frac{yz}{x^2}$ D. $\frac{xz}{y^2}$

14. 0.009049999 =

- A. 0.00905 (correct to 3 decimal places).
- B. 0.00905 (correct to 3 significant figures).
- C. 0.00905 (correct to 6 decimal places).
- D. 0.00905 (correct to 6 significant figures).
- 15. In the figure, O is the centre of the sector OABC. If the area of $\triangle OAC$ is 12 cm^2 , find the area of the segment ABC.
 - A. $3(\pi 2) \text{ cm}^2$
 - B. $3(\pi 1)$ cm²
 - C. $6(\pi 2)$ cm²
 - D. $6(\pi 1)$ cm²

Go on to the next page

16. The figure shows a right circular cone of height 8 cm and slant height 17 cm. Find the volume of the circular cone.

17. In the figure, *ABCD* is a rectangle. *E* is the mid-point of *BC*. *F* is a point lying on *CD* such that DF = 2CF. If the area of $\triangle CEF$ is 1 cm^2 , then the area of $\triangle AEF$ is

18. In the figure, AB = 4 cm, BC = CD = DE = 8 cm and FG = 9 cm. Find the perimeter of $\triangle AEH$.

19. In the figure, AB = BC and D is a point lying on BC such that CD = DE. If AB // CE, find $\angle CDE$.

20. In the figure, O is the centre of the semi-circle ABCD. AC and BD intersect at E. If AD//OC, then $\angle AED =$

- 21. In the figure, O is the centre of the circle ABCD. If $\widehat{AB} = \widehat{BC} = 2\widehat{CD}$, then $\angle BCD =$
 - A. 64°.
 - B. 87°.
 - C. 93°.
 - D. 116°.

22. In the figure, ABCD is a square. F is a point lying on AD such that CF // BE. If AB = AE, find $\angle ABF$ correct to the nearest degree.

23. For $0^{\circ} \le \theta \le 90^{\circ}$, the least value of $\frac{30}{3\sin^2 \theta + 2\sin^2(90^{\circ} - \theta)}$ is

- A. 5.
- B. 6.
- C. 10.
- D. 15.

24. Which of the following parallelograms have rotational symmetry and reflectional symmetry?

- 25. If the point (-2, -1) is reflected with respect to the straight line y = -5, then the coordinates of its image are
 - A. (-8, -1).
 - B. (-2, -9).
 - C. (-2, 11).
 - D. (12, -1).

26. The coordinates of the points A and B are (1, -3) and (-5, 7) respectively. If P is a point lying on the straight line y = x + 2 such that AP = PB, then the coordinates of P are

- A. (-2, 0).
- B. (-2, 2).
- $C. \qquad (0,2) \ .$
- D. (3,5).

27. The equation of a circle is $2x^2 + 2y^2 + 8x - 12y + 3 = 0$. Which of the following are true?

- I. The coordinates of the centre of the circle are (-2, 3).
- II. The radius of the circle is 7.
- III. The point (2,3) lies outside the circle.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 28. Two numbers are randomly drawn at the same time from four cards numbered 2, 3, 5 and 7 respectively. Find the probability that the sum of the numbers drawn is a multiple of 4.
 - A. $\frac{1}{3}$ B. $\frac{1}{4}$ C. $\frac{1}{6}$ D. $\frac{5}{16}$
- 29. The box-and-whisker diagram below shows the distribution of the heights (in cm) of some students. Which of the following is/are true?

- I. The height of the tallest student is 180 cm.
- II. The inter-quartile range of the distribution is 15 cm.
- III. Less than half of the students are taller than $\,170\,\text{cm}$.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- 30. The figure below shows the cumulative frequency polygons of the test score distributions X and Y. Let m_1 , r_1 and s_1 be the median, the range and the standard deviation of X respectively while m_2 , r_2 and s_2 be the median, the range and the standard deviation of Y respectively. Which of the following are true?

Section B

31.

The figure above shows the graph of y = f(x). If 2f(x) = g(x), which of the following may represent the graph of y = g(x)?

32. B000000023₁₆ =

- A. $11 \times 16^{10} + 23$.
- B. $11 \times 16^{10} + 35$.
- C. $12 \times 16^{11} + 23$.
- D. $12 \times 16^{11} + 35$.

PP-DSE-MATH-CP 2-11

Go on to the next page

- 33. If the roots of the quadratic equation $x^2 kx + 3 = 0$ are α and β , then $\alpha^3 + \beta^3 = \beta^3$
 - A. k^{3} . B. $k^{3}-3k$. C. $k^{3}-9k$. D. $k^{3}-12k$.

34. If x is a real number, then the real part of (x+3i)(3+i) is

- A. 3x. B. x+3. C. 3x+3. D. 3x-3.
- 35. The *n*th term of a sequence is 2n+3. If the sum of the first *m* terms of the sequence is less than 3000, then the greatest value of *m* is
 - A. 52.
 B. 53.
 C. 56.

57.

D.

36. Let b > 1. If $a = \log_{12} b$, then $\frac{1}{a} =$

A.
$$\log_b \frac{1}{12}$$
.
B. $\log_b 12$.
C. $\log_{12} \frac{1}{b}$.
D. $\frac{1}{\log_b 12}$.

37. The graph in the figure shows the linear relation between $\log_3 t$ and $\log_3 x$. If $x = kt^a$, then k =

38. Let *a* be a constant and $-90^{\circ} < \theta < 90^{\circ}$. If the figure shows the graph of $y = a \sin(x^{\circ} + \theta)$, then

39. The figure shows a right prism *ABCDEF* with a right-angled triangle as the cross-section. *A*, *B*, *E* and *F* lie on the horizontal ground. *G* is a point lying on *AB* such that AG:GB=5:3. If $\angle DAE = a$, $\angle CBF = b$, $\angle CGF = c$ and $\angle DGE = d$, which of the following is true?

- 40. In the figure, A is the common centre of the two circles. BC is a chord of the larger circle and touches the smaller circle at D. AD produced meets the larger circle at E. F is a point lying on the smaller circle such that E, D, A and F are collinear. If BC = 24 cm and DE = 8 cm, then EF =
 - A. 13 cm.
 - B. 16 cm.
 - C. 18 cm .
 - D. 20 cm .

- 41. If the straight line x y = 0 and the circle $x^2 + y^2 + 6x + ky k = 0$ do not intersect with each other, find the range of values of k.
 - A. 2 < k < 18
 - B. -18 < k < -2
 - C. k < 2 or k > 18
 - D. k < -18 or k > -2

- 42. Let *O* be the origin. If the coordinates of the points *A* and *B* are (18, -24) and (18, 24) respectively, then the *x*-coordinate of the orthocentre of $\triangle OAB$ is
 - A. -14 .
 - B. 10.
 - C. 12.
 - D. 25.

43. Mary, Tom and 8 other students participate in a solo singing contest. If each participant performs once only and the order of performance is randomly arranged, find the probability that Mary performs just after Tom.

A.	$\frac{1}{2}$
B.	$\frac{1}{10}$
C.	$\frac{1}{45}$
D.	$\frac{1}{90}$

44. The mean, the variance and the inter-quartile range of a set of numbers are 40, 9 and 18 respectively. If 5 is added to each number of the set and each resulting number is then tripled to form a new set of numbers, find the mean, the variance and the inter-quartile range of the new set of numbers.

	Mean	Variance	Inter-quartile range
A.	120	27	69
В.	120	81	69
C.	135	27	54
D.	135	81	54

- 45. Let *A* be a group of numbers $\{\alpha, \beta, \gamma, \delta\}$ and *B* be another group of numbers $\{\alpha+2, \beta+2, \mu+2, \gamma+2, \delta+2\}$, where $\alpha < \beta < \mu < \gamma < \delta$. Which of the following must be true?
 - I. The median of A is smaller than that of B.
 - II. The range of A and the range of B are the same.
 - III. The standard deviation of A is greater than that of B.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

END OF PAPER